相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
数学代写|运筹学作业代写operational research代考|General Modeling Tricks
In this section, we discuss a number of generally applicable modeling tricks to model “almost-linear” programming problems as (mixed) ILP problems. Some of these tricks have already been used in the examples in Section 2.2. Other tricks will come back in the exercises.
Almost-Linear Objective Function
Suppose that a production-stock problem is given, with aim to minimize the costs, and the objective function contains an almost-linear term $P(x)$, where $P(x)$ represents the production costs of $x$ units. The following three cases are of interest for applications:
(a) variable production costs plus fixed setup cost:
$$
P(x)=\left{\begin{array}{cc}
K+c x & \text { for } x>0 \
0 & \text { for } x=0
\end{array}\right.
$$
where $K$ and $c$ are constants with $K>0$ and $x$ is a variable;
(b) piecewise-linear production costs:
$$
P(x)=\left{\begin{array}{cl}
c_1 x & \text { for } 0 \leq x \leq a_1, \
c_1 a_1+c_2\left(x-a_1\right) & \text { for } x>a_1,
\end{array}\right.
$$
where $c_1$ and $c_2$ are constants with $0a
\end{array}\right.
$$
where $c, d$, and $a$ are constants with $c>0$ and $0<d<1$ and $x$ is an integer variable.
Case (a). The idea is to introduce a 0-1 variable $\delta$ and use suitably selected linear constraints to ensure that
$$
\delta_1=\left{\begin{array}{l}
1 \text { if } x>0 \
0 \text { if } x=0
\end{array}\right.
$$
数学代写|运筹学作业代写operational research代考|The Branch-and-Bound Method
Branch-and-bound is a flexible approach that is generally applicable to solving discrete optimization problems, including integer programming problems. The branchand-bound approach is not a method with a set procedure; rather, it consists of a few simple basic ideas, the details of which depend on the problem and leave room for personal input. The basic idea is to split the total collection of feasible solutions into ever smaller subsets and, during this process, try to eliminate certain subsets that do not need to be searched. The elimination is carried out using upper and lower bounds. To further explain this, we assume, for the sake of simplicity, that the optimization problem is a maximization problem. The following holds for the upper and lower bounds:
- An upper bound is associated with every subset of solutions created during the splitting (branching) process. The upper bound for a given subset of solutions is a number such that the objective value of every feasible solution in the subset is less than or equal to that number.
- The lower bound is the objective value of the best feasible solution known so far.
Every subset therefore has its own upper bound. The lower bound, however, is not directly linked to a particular subset. The initial value of the lower bound is often the objective value of a feasible solution found using a heuristic method. What is the point of the upper and lower bounds? Suppose that for a subset of solutions, the upper bound for that subset is less than the best lower bound known so far. Then this subset can be eliminated. After all, the objective value of every feasible solution in the subset is less than the objective value of the best feasible solution known so far.
What do the branching rule and the calculation of the upper bound look like? This depends strongly on the application in question. If the discrete optimization problem is an ILP problem, then one can find an upper bound for a given subset of solutions by solving the LP relaxation of the ILP problem associated with the subset. If a subset is not eliminated, then it is split further by choosing one variable that should have been integer valued but assumes a fractional value in the solution to the LP relaxation. Suppose, for example, that the variable $x_5$ with value 7.47 is chosen; then the subset under consideration is split into two smaller subsets. One smaller subset consists of all solutions with $x_5 \leq 7$, while the other subset consists of all solutions with $x_5 \geq 8$.
A typical phenomenon in the branch-and-bound method is that during the branching process, other feasible solutions to the original maximization problem are found. The lower bound is then tightened if the objective value of a newly found feasible solution is better than the best objective value known so far. An improved lower bound can then lead to the elimination of certain subsets. It should also be clear that a tight upper bound for a subset is extremely important. The tighter the upper bound, the sooner a subset will be eliminated. In practice, however, the calculation of a tighter upper bound requires more computation time. In the implementation of a branch-and-bound method, these two aspects must therefore be weighed against each other.

运筹学代考
数学代写|运筹学作业代写operational research代考|General Modeling Tricks
在本节中,我们将讨论一些普遍适用的建模技巧,以将”几乎线性”编程问题建模为(混 合) ILP 问题。其中一些技功在第 2.2 节的示例中使用。其他技将在练习中回归。 几乎线性的目标函数
假设给定一个生产库存问题,目标是最小化成本,并且目标函数包含一个几乎线性的项 $P(x)$ , 在哪里 $P(x)$ 代表生产成本 $x$ 单位。以下三种情况是应用感兴趣的:
(a) 可变生产成本加上固定设置成本:
$\$ \$$
$P(x)=\backslash$ left {
$$
K+c x \quad \text { for } x>00 \quad \text { for } x=0
$$
、正确的。
where $\$ K \$$ and $\$ c \$$ areconstantswith $\$ K>0 \$ a n d \$ x \$$ isavariable; (b) piecewise
$$
P(x)=\sqrt{ }{
$$
$$
c_1 x \text { for } 0 \leq x \leq a_1, c_1 a_1+c_2\left(x-a_1\right) \text { for } x>a_1,
$$
正确的。
其中 $\$ c _1 \$$ 和 \$c_2\$ 是 \$0a \end{array}\right 的常量。 }
在哪里 $c, d$ ,和 $a$ 是常数 $c>0$ 和 $000$ if $x=0$
数学代写|运筹学作业代写operational research代考|The Branch-and-Bound Method
分支定界是一种灵活的方法,通常适用于解决离散优化问题,包括整数规划问题。分支限界方法不是一种具有固定过程的方法;相反,它包含一些简单的基本思想,其细节取决于问题并为个人输入留有余地。基本思想是将可行解的总集合拆分成更小的子集,并在此过程中尝试消除某些不需要搜索的子集。消除是使用上限和下限进行的。为了进一步解释这一点,为了简单起见,我们假设优化问题是一个最大化问题。以下适用于上限和下限:
- 上限与拆分(分支)过程中创建的每个解决方案子集相关联。给定解决方案子集的上限是一个数字,使得子集中每个可行解决方案的目标值都小于或等于该数字。
- 下界是目前已知的最佳可行解的目标值。
因此,每个子集都有自己的上限。然而,下界并不直接与特定子集相关联。下界的初始值通常是使用启发式方法找到的可行解的目标值。上界和下界的意义何在?假设对于解的一个子集,该子集的上限小于目前已知的最佳下限。然后可以消除这个子集。毕竟,子集中每个可行解的目标值都小于目前已知的最佳可行解的目标值。
分支规则和上限的计算是什么样的?这在很大程度上取决于所讨论的应用程序。如果离散优化问题是 ILP 问题,则可以通过求解与该子集关联的 ILP 问题的 LP 松弛来找到给定解子集的上限。如果未消除子集,则通过选择一个变量进一步拆分它应该是整数值但在 LP 松弛的解决方案中假定为分数值。例如,假设变量X5选择值为 7.47;然后将所考虑的子集分成两个较小的子集。一个较小的子集包含所有解决方案X5≤7,而另一个子集由所有解决方案组成X5≥8.
分支定界法的一个典型现象是在分支过程中,找到原最大化问题的其他可行解。如果新发现的可行解的目标值优于目前已知的最佳目标值,则下限会收紧。改进的下界可以导致某些子集的消除。还应该清楚的是,子集的严格上限非常重要。上限越紧,子集被淘汰得越快。然而,在实践中,计算更严格的上限需要更多的计算时间。因此,在实施分支定界法时,必须权衡这两个方面。

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。