相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
经济代写|博弈论代写Game Theory代考|SCN Coverage Optimization
As described above, coverage problems in small cell clusters mainly include coverage holes, loud neighbor overlap, cell overload and low throughput. The target of coverage optimization is to minimize these problems. It should be noted that to reduce coverage holes, loud neighbor overlap and cell overload, a control center could be deployed to make the small cells collaborate with each other. Frequent information exchange is needed between SBS and central controller which needs sufficient backhaul connection. If there is no control center in the system or the backhaul connection is limited, distributed coverage optimization should be employed which aims to maximize the throughput and only needs little information exchange between neighbors.
For centralized method, the target is to reduce coverage hole, avoid loud neighbor overlap and cell overload. Thus the objective function can be formulated as an area coverage ratio, given by
$$
f=\frac{\sum S_{\text {cover }}}{\sum S_{\text {cover }}+\sum S_{\text {hole }}+\sum S_{\text {overlap }}}
$$ where $\Sigma S_{\text {cover }}$ is the area properly covered without coverage holes and overlapping, $\Sigma S_{\text {hole }}$ and $\Sigma S_{\text {overlap }}$ are the area of coverage holes and overlapped area with loud neighbors, respectively, and $\Sigma S_{\text {cower }}+\Sigma S_{\text {havele }}+\Sigma S_{\text {overlap }}$ is the target area.
However, in real networks, it is difficult to measure the area of these spaces. Therefore, instead of the area coverage ratio shown in (9), a user coverage ratio (see (10) below) is employed to evaluate the coverage quality. The optimization problem is thus formulated as follows:
$$
\begin{aligned}
& \max \frac{N_{\text {serred }}}{N_{\text {scrued }}+N_{\text {hole }}+N_{\text {loud }}+N_{\text {ocerload }}} \
& \text { s.t. } \
& P_{\min } \leq P_{t x}(j) \leq P_{\max }, j \in J \
& |U(j)| \leq \Omega
\end{aligned}
$$
where $N_{\text {semede }} N_{\text {hole }}, N_{\text {loud }}$ and $N_{\text {overtaad }}$ are the number of normal users, users in holes, users in loud neighbor overlap area and users rejected by cell overload, respectively; $P_{\min }$ and $P_{\max }$ are the minimum and maximum transmission powers of the SBSs, respectively. As described before, $N_{\text {semede }}, N_{\text {balle }}, N_{\text {loumd }}$ and $N_{\text {onerlaad }}$ can be obtained from measurement reports of UEs. Obviously, when there are more users in normal state and less users in holes, loud neighbor overlap area and overload, the user coverage ratio (10) increases, demonstrating a better coverage quality.
经济代写|博弈论代写Game Theory代考|Overview of Particle Swarm Optimization
PSO is a population based stochastic optimization technique, inspired by social behavior of bird flocking or fish schooling (Kennedy \& Eberhart, 1995). It has been successfully applied in various research areas to solve multidimensional problems. In PSO, each single solution is a “bird” in the search space, which is called “particle”. The optimization objective is the fitness values of all the particles. A group of particles fly through the problem space by following the current optimum particles and finally the global optimum solution can be obtained (“Swarm Intelligence”).
In small cell clusters, the behavior of small cells is quite swarm like: they cannot be too close or too far away; change of one entity (small cell) may affect neighboring entities; neighboring entities need to collaborate together to get a global best solution. Therefore, PSO can be employed to solve the coverage optimization problem of small cell clusters. First of all, associations are set up between the small cell cluster and the particles in the swarm, pilot transmit power of small cells and particle position, and power adjustment and the velocity of the particle. Moreover, (10) can be taken as the fitness function in PSO. In standard PSO (Kennedy \& Eberhart, 1995; Shi \& Eberhart, 1998), each particle position $P_i$ represents a possible solution, where $i \in[1, N]$ is the index of the particle and $N$ is the population of the particle group. Accordingly, in coverage optimization for $\mathrm{SCN}$, the pilot transmit power of the $\mathrm{SCN} i$ can be associated to the particle position, i.e., $\vec{P}i=\left[P t x_1^i, P t x_2^i, \ldots, P t x_n^i\right]$, where $n$ is the total number of SAPs in the cluster. Assuming that there are $N$ SCNs, the pilot transmit power of SCN $i$ is updated according to $\mathrm{PSO}$ algorithm as follows $$ \begin{aligned} & \bar{P}_i(t+1)=\bar{P}_i(t)+\vec{\delta}_i(t+1) \ & \vec{\delta}_i(t+1)=\omega \vec{\delta}_i(t)+c_1 r_1\left[\vec{P}{\text {stest }}^i(t)-\vec{P}i(t)\right]+c_2 r_2\left[\vec{P}{\text {gbest }}(t)-\vec{P}i(t)\right] \end{aligned} $$ where $\bar{P}_i(t+1)$ and $\bar{P}_i(t)$ are the updated and current and pilot transmit powers of SCN $i$, respectively, and $\bar{\delta}_i(t+1)$ and $\bar{\delta}_i(t)$ are the updated and current power adjustment, respectively. Moreover, $\omega$ is the inertia weight which is usually set to a positive value decreasing from 1.4 to 0.5 to improve the performance of PSO (Shi \& Eberhart, 1998). $\bar{P}{s h e s t}^i(t)$ is the best solution found by particle $i$ in the previous iterations, i.e., the pilot transmit power vector for the $\mathrm{SCN}$ that can achieve the best coverage. $\vec{P}{\text {ghest }}(t)$ is the best pilot transmit power vector found by all $N$ particles in the previous $t$ iterations. $r_1$ and $r_2$ are random values uniformly distributed in $[0,1]$. The second term in (15) $c_1 r_1\left[\vec{P}{s b e s t}^i(t)-\vec{P}i(t)\right]$ stands for personal influence and the third term $c_2 r_2\left[\vec{P}{\text {gbest }}(t)-\vec{P}_i(t)\right]$ is called social influence. $c_1$ and $c_2$ are weights for personal and social terms, respectively, and both can be set to 2 (Kennedy \& Eberhart, 1995 ).

博弈论代考
经济代写|博弈论代写Game Theory代考|SCN Coverage Optimization
如上所述,小小区集群中的覆盖问题主要包括覆盖空洞、大邻居重叠、小区过载和低吞 吐量。覆盖优化的目标是尽量减少这些问题。需要注意的是,为了减少覆盖空洞、嘈杂 的邻居重疍和小区过载,可以部署一个控制中心来使小型小区相互协作。SBS 和中央控 制器之间需要频繁的信息交换,需要足够的回程连接。如果系统中没有控制中心或回程 连接受限,则应采用分布式覆盖优化,旨在最大化吞吐量并且只需要邻居之间的少量信 息交换。
对于集中式方法,目标是减少覆盖空洞,避免响亮的邻居重㫜和小区过载。因此,目标 函数可以表示为面积覆盖率,由下式给出
$$
f=\frac{\sum S_{\text {cover }}}{\sum S_{\text {cover }}+\sum S_{\text {hole }}+\sum S_{\text {overlap }}}
$$
在哪里 $\Sigma S_{\text {cover }}$ 区域是否正确覆盖,没有覆盖孔和重疍, $\Sigma S_{\text {hole }}$ 和 $\Sigma S_{\text {overlap }}$ 分别是覆 盖空洞的面积和与响亮的邻居重叠的面积,以及 $\Sigma S_{\text {cower }}+\Sigma S_{\text {havele }}+\Sigma S_{\text {overlap }}$ 是 目标区域。
然而,在真实网络中,很难测量这些空间的面积。因此,代替(9)中所示的区域覆盖 率,采用用户覆盖率(参见下面的(10))来评估覆盖质量。优化问题因此表述如下:
$$
\max \frac{N_{\text {serred }}}{N_{\text {scrued }}+N_{\text {hole }}+N_{\text {loud }}+N_{\text {ocerload }}} \quad \text { s.t. } P_{\min } \leq P_{t x}(j) \leq P_{\max }, j \in J
$$
在哪里 $N_{\text {semede }} N_{\text {hole }}, N_{\text {loud }}$ 和 $N_{\text {overtaad }}$ 分别是正常用户数、空洞用户数、大声邻居 重疍区用户数和被小区过载拒绝的用户数; $P_{\min }$ 和 $P_{\max }$ 分别是 SBS 的最小和最大传输 功率。如前所述, $N_{\text {semede }}, N_{\text {balle }}, N_{\text {loumd }}$ 和 $N_{\text {onerlaad }}$ 可以从UE的测量报告中获 得。显然,当正常状态用户较多,空洞、大声邻居重疍区和过载用户较少时,用户覆盖 率(10)增加,覆盖质量较好。
经济代写|博弈论代写Game Theory代考|Overview of Particle Swarm Optimization
PSO 是一种基于种群的随机优化技术,其灵感来自鸟群或鱼群的社会行为 (Kennedy $\backslash \&$ Eberhart, 1995)。它已成功应用于各个研究领域,以解决多维问题。在 PSO 中,每一 个单解都是搜索空间中的一只“鸟”,称为”粒子”。优化目标是所有粒子的适应度值。一 群粒子跟随当前最优粒子在问题空间中飞行,最终得到全局最优解(”群体智能”)。
在small cell集群中, small cell的行为很像蜂群: 它们不能太近也不能太远;一个实体 (小型小区) 的变化可能会影响相邻实体;相邻实体需要共同协作以获得全球最佳解决 方案。因此,粒子群算法可以用来解决小、区集群的覆盖优化问题。首先,在小蜂窝簇 与群体中的粒子之间建立关联,导频小蜂窝发射功率和粒子位置,以及功率调整和粒子 速度。此外,(10) 可以作为 PSO 中的适应度函数。在标准 PSO
(Kennedy\&Eberhart, 1995; Shi\&Eberhart, 1998) 中,每个粒子位置 $P_i$ 代表一个可能的 解决方案,其中 $i \in[1, N]$ 是粒子的指数和 $N$ 是粒子群的种群。因此,在覆盖优化中 $\mathrm{SCN}$ ,导频发射功率 $S C N i$ 可以与粒子位置相关联,即 $\vec{P} i=\left[P t x_1^i, P t x_2^i, \ldots, P t x_n^i\right]$ , 在哪里 $n$ 是集群中 SAP 的总数。假设有 $N \mathrm{SCNs}$ , SCN的导频发射功率泿据更新PSO算法如下
$$
\bar{P}i(t+1)=\bar{P}_i(t)+\vec{\delta}_i(t+1) \quad \vec{\delta}_i(t+1)=\omega \vec{\delta}_i(t)+c_1 r_1\left[\vec{P}{\text {stest }^i}(t)-\vec{P} i(t)\right]
$$
在哪里 $\bar{P}i(t+1)$ 和 $\bar{P}_i(t)$ 是更新的、当前的和导频的 $\mathrm{SCN}$ 发射功率 $i$ ,分别和 $\bar{\delta}_i(t+1)$ 和 $\bar{\delta}_i(t)$ 分别是更新的和当前的功率调整。而且, $\omega$ 是惯性权重,通常设置为 正值,从 1.4 减少到 0.5 以提高 PSO 的性能(Shi \& Eberhart,1998)。Pshest ${ }^i(t)$ 是粒子找到的最优解 $i$ 在之前的迭代中,即导频发射功率矢量SCN可以达到最好的覆盖 率。 $\vec{P}$ ghest $(t)$ 是所有发现的最佳导频发射功率矢量 $N$ 以前的粒子 $t$ 迭代。 $r_1$ 和 $r_2$ 是均 匀分布的随机值 $[0,1]$. . (15)中的第二项 $c_1 r_1\left[\vec{P} s b e s t^i(t)-\vec{P} i(t)\right]$ 代表个人影响力和 第三任期 $c_2 r_2\left[\vec{P}{\text {gbest }}(t)-\vec{P}_i(t)\right]$ 称为社会影响力。 $c_1$ 和 $c_2$ 分别是个人和社会术语 的权重,两者都可以设置为 2 (Kennedy \&\& Eberhart, 1995)。

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。