相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
统计代写|网络分析代写Network Analysis代考|Graph community and discovery
Given a real graph, the distribution of edges, as noted in $[18,21]$, is quite inhomogeneous, both globally and locally. This causes the insurgence of regions with a high concentration of edges, i.e., subsets of nodes with a high number of edges among them, and a low number of edges outside. These regions are often referred to as communities, (or clusters or modules), and the property of graphs that have these regions is called a community structure. The relevance of finding communities in a graph is high with applications in many fields. There exist many algorithms for community detection in graphs, and the complete enumeration of them is beyond the scope of this book. Here, we define the main characteristics of a community, then we present some approaches, whereas the interested reader may find more information in [18, $21]$.
As outlined by Fortunato in [18], there is no universal definition of community, and the existing ones are often related to the specific application or context. Trivially, a community in a graph should have two main properties: the number of edges connecting its nodes should be high, whereas the number of the edges connecting its edges to the remaining ones should be low.
More specifically, a community is popularly defined as a cluster having significant intra-community connectivity in comparison to inter-community connectivity in the network. Formally, we can define a network community as follows:
Definition 3.6.1 (Network community). Given a network $\mathcal{G}=$ $(\mathcal{V}, \mathcal{E})$, a network community $\mathcal{C}_i=\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\right)$ is a densely connected subgraph of $\mathcal{G}\left(\mathcal{C}_i \subseteq \mathcal{G}\right)$, where interconnectivity of $\mathcal{V}^{\prime}$ with respect to $\mathcal{E}^{\prime} \subseteq \mathcal{E}$ is higher in comparison to the rest of $\mathcal{V}$, i.e., $\mathcal{V}-\mathcal{V}^{\prime}$.
Consequently, a community should have three desired properties:
- the intra-community density is significantly larger than the average edge density of the graph;
- the inter-community density is significantly lower than the average edge density of the graph;
- $\mathcal{C}_i$ should be connected, i.e., there must be a path between each pair of its vertices, running only through vertices of $\mathcal{C}_i$.
Mostly, communities are treated as exclusive, also called disjoint community. An exclusive community is a subgraph, such that none of its vertices belongs to any other communities. In other words, a node belonging to a community cannot be a member of any other communities simultaneously.
统计代写|网络分析代写Network Analysis代考|Few community detection methods
Infomap [32] is a popular community detection method for social networks that employ random walks in the connected network to maximize the amount of information flow on the decomposed subnetworks for community detection. iDBLINK [26] is an incremental density-based community detection algorithm [33] for dynamic network, where the structure of the communities changes over time. Based on the changes in the connections between nodes over time, it immediately updates the corresponding community structures. Inspired from fuzzy granular social networks (FGSN) [20] and Louvain algorithm [5], Nicole et. al. [13] proposed a method for detecting communities in a social network. The molecular complex detection algorithm (MCODE), ${ }^1$ described in the early work of Bader et al., [30], takes in input and interaction networks and tries to find complexes by building clusters. The rationale of MCODE is the separation of dense regions based on an ad hoc defined local density. MCODE has three main stages: (i) node weighting, (ii) complexes prediction, and (iii) postprocessing.
Overlapping cluster generator (OCG) [2] creates a hierarchy of overlapping clusters according to an extension of Newman’s modularity function. Preferential learning and label propagation algorithm, called PLPA [35] is proposed to detect overlapping communities based on learning behavior and information interaction in social networks. COPRA [19] optimizes and expands seed community iteratively, based on the clustering coefficient of each node by taking the average clustering coefficient of neighboring nodes. LPANNI [23], is a label propagation-based method to detect overlapping communities. It quantifies the influence of neighbor nodes by adopting node importance and affinity between node pairs to improve the label update strategy. SLPAD [1] follows label propagation model, such as SLPA [37], for detecting overlapping communities in dynamic networks. AFOCS [28] is an adaptive framework for the detection of overlapping communities as well as tracking the evolution of overlapping communities in incremental networks. TILES [31] extracts overlapping communities in dynamic social networks using peripheral membership and core membership and reevaluate membership of nodes to communities for each new interaction. OSLOM [22] uses local optimization of a fitness function to detect overlapping communities in incremental networks. An extended adaptive density peaks clustering (EADP) [38] is proposed for overlapping community detection based on a novel distance function. EADP adaptively choose cluster centres by employing a linear fitting-based strategy. MCL (Markov clustering algorithm) [14] is an iterative algorithm that simulates random walks using Markov chains. A possible way to define a module within a network is as a collection of nodes that are more connected with each other than to the others. It follows that a random walk starting in any of these nodes is more likely to stay within the cluster rather than to travel between clusters. The simulation is performed by iteratively applying two main operations, usually referred to as expansion and inflation.
Next, we demonstrate the use of R for the implementation of various graph analysis methods.

网络分析代考
统计代写|网络分析代写Network Analysis代考|Graph community and discovery
给定一个真实的图,边的分布,如 $[18,21]$ ,在全球和局部都是相当不均匀的。这会导致 边缘高度集中的区域的叛乱,即节点子集在其中具有大量边缘,而在外部具有少量边 缘。这些区域通常称为社区(或集群或模块),具有这些区域的图的属性称为社区结 构。在许多领域的应用程序中,在图中查找社区的相关性很高。图的社区发现算法很 多,本书不一一列举。在这里,我们定义了社区的主要特征,然后我们提出了一些方 法,感兴趣的读者可以在 $[18,21]$.
正如 Fortunato 在 [18] 中概述的那样,社区没有通用的定义,现有的通常与特定的应 用程序或上下文相关。简单地说,图中的社区应具有两个主要属性:连接其节点的边数 应多,而连接其边与其余边的边数应少。
更具体地说,社区通常被定义为与网络中的社区间连接相比具有显着社区内连接的集 群。形式上,我们可以定义一个网络社区如下:
定义 3.6.1 (网络社区) 。给定一个网络 $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ ,一个网络社区 $\mathcal{C}_i=\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\right)$ 是一 个密集连接的子图 $\mathcal{G}\left(\mathcal{C}_i \subseteq \mathcal{G}\right)$ ,其中的互连性 $\mathcal{V}^{\prime}$ 关于 $\mathcal{E}^{\prime} \subseteq \mathcal{E}$ 与其余部分相比更高 $\mathcal{V} ,$ 那是, $\mathcal{V}-\mathcal{V}^{\prime}$.
因此,一个社区应该具有三个理想的属性:
- 社区内密度明显大于图的平均边密度;
- 社区间密度明显低于图的平均边缘密度;
- $\mathcal{C}_i$ 应该是连通的,即它的每对顶点之间必须有一条路径,只通过 $\mathcal{C}_i$. 大多数情况下,社区被视为排他性的,也称为不相交的社区。排他社区是一个子 图,因此它的顶点都不属于任何其他社区。换句话说,属于一个社区的节点不能同 时是任何其他社区的成员。
统计代写|网络分析代写Network Analysis代考|Few community detection methods
Infomap [32] 是一种流行的社交网络社区检测方法,它在连接的网络中采用随机游走,以最大化用于社区检测的分解子网络上的信息流量。iDBLINK [26] 是一种用于动态网络的基于增量密度的社区检测算法 [33],其中社区的结构随时间变化。根据节点间连接随时间的变化,立即更新相应的社区结构。受模糊粒度社交网络 (FGSN) [20] 和 Louvain 算法 [5] 的启发,Nicole 等人。阿尔。[13] 提出了一种在社交网络中检测社区的方法。分子复合物检测算法(MCODE),1在 Bader 等人 [30] 的早期工作中有所描述,它接受输入和交互网络并尝试通过构建集群来寻找复合体。MCODE 的基本原理是基于临时定义的局部密度来分离密集区域。MCODE 具有三个主要阶段:(i) 节点加权,(ii) 复合物预测,以及 (iii) 后处理。
重叠簇生成器 (OCG) [2] 根据 Newman 模块化函数的扩展创建重叠簇的层次结构。优先学习和标签传播算法,称为 PLPA [35],被提议基于社交网络中的学习行为和信息交互来检测重叠社区。COPRA [19] 基于每个节点的聚类系数,通过取相邻节点的平均聚类系数,迭代优化和扩展种子社区。LPANNI [23] 是一种基于标签传播的检测重叠社区的方法。它通过采用节点重要性和节点对之间的亲和力来量化邻居节点的影响,以改进标签更新策略。SLPAD [1] 遵循标签传播模型,例如 SLPA [37],用于检测动态网络中的重叠社区。AFOCS [28] 是一个自适应框架,用于检测重叠社区以及跟踪增量网络中重叠社区的演变。TILES [31] 使用外围成员资格和核心成员资格在动态社交网络中提取重叠社区,并为每个新交互重新评估节点到社区的成员资格。OSLOM [22] 使用适应度函数的局部优化来检测增量网络中的重叠社区。提出了一种扩展自适应密度峰聚类 (EADP) [38],用于基于新型距离函数的重叠社区检测。EADP 通过采用基于线性拟合的策略自适应地选择聚类中心。MCL(马尔可夫聚类算法)[14] 是一种使用马尔可夫链模拟随机游走的迭代算法。在网络中定义模块的一种可能方法是作为节点的集合,这些节点彼此之间的联系比彼此之间的联系更紧密。因此,从这些节点中的任何一个节点开始的随机游走更有可能留在集群内,而不是在集群之间移动。模拟是通过迭代应用两个主要操作来执行的,通常称为膨胀和膨胀。
接下来,我们将演示如何使用 R 来实现各种图形分析方法。

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。