# 经济代写|微观经济学代写Microeconomics代考|Dynamic Approach

## 经济代写|微观经济学代写Microeconomics代考|Dynamic Approach

The profit maximization problems and the production cost minimization problem in the short-term firm strategy have similar forms to versions of these problems presented in long-term strategy. The difference is that considering the short-term strategy a firm has to take into account additional constraints on resources of production factors. ${ }^{21}$ They can turn out to be binding when an optimal production factor input resulting from one of the optimization problems considered without constraints on resources is bigger than the actual resource of this production factor. Then a firm determining the optimal input has to use this quantity constrained by the production factor resource. In the case of deciding about the optimal supply, the constraint results from the constrained output level when using limited inputs of production factors equal to their resources.

We use the same notation as in Sect. 4.4.2 discussing the dynamic approach in long-term strategy. Let us also introduce additional notation:
$\mathbf{b}(t)=\left(b_1(t), b_2(t)\right)>0$-a vector of time-variant resources of production factors, $w(t)=f\left(b_1(t), b_2(t)\right)$-a time-variant output level constrained due to the production factors’ limitation, $\overline{\mathbf{x}}^G(t)$-an optimal solution to the profit maximization problem with regard to inputs of production factors whose resources are unlimited, $\widetilde{\mathbf{x}}^G(t)$-an optimal solution to the production cost minimization problem when resources of production factors are unlimited, $\bar{y}^G(t)$-an optimal solution to the profit maximization problem with regard to output level with unlimited resources of production factors.

In the short-term strategy, the profit maximization problem with regard to inputs of production factors takes the form:
\begin{aligned} \pi(\mathbf{x}(t)) & =r(\mathbf{x}(t))-c^{t o t}(\mathbf{x}(t)) \ (4.217) & =\left{p(t) f(\mathbf{x}(t))-\left(c_1(t) x_1(t)+c_2(t) x_2(t)+d(t)\right)\right} \mapsto \max \end{aligned}
(4.218) $\quad x_i(t) \leq b_i(t) \quad i=1,2$
(4.219) $\quad \mathbf{x}(t) \geq \mathbf{0}$.

## 经济代写|微观经济学代写Microeconomics代考|Monopoly—Long-Term Strategy

Let us use the following notation:
$\mathbf{x}=\left(x_1, x_2\right) \geq(0,0)-$ a vector of inputs of production factors,
$y=f\left(x_1, x_2\right)$-an output level,
$p(y)>0, \frac{\mathrm{d} p(y)}{\mathrm{d} y}<0$-a price of a product manufactured by a monopoly as a decreasing function of product supply, set by a monopoly, $\mathbf{c}(\mathbf{x})=\left(c_1\left(x_1\right), c_2\left(x_2\right)\right)>(0,0), \frac{\mathrm{d} c_i\left(x_i\right)}{\mathrm{d} x_i}>0, \quad i=1,2$-a vector of prices of production factors, each of whom is an increasing function of demand reported by a monopoly for a given production factor,
$r(y)=p(y) y$-revenue (turnover) from sales of a manufactured product as a function of product supply,
$r\left(x_1, x_2\right)=p\left(f\left(x_1, x_2\right)\right) f\left(x_1, x_2\right)$-revenue (turnover) from sales of a manufactured product as a function of inputs of production factors, $c^{t o t}\left(x_1, x_2\right)=c_1\left(x_1\right) x_1+c_2\left(x_2\right) x_2+d$-total cost of production as a nonlinear function of inputs of production factors,
$c^v\left(x_1, x_2\right)=c_1\left(x_1\right) x_1+c_2\left(x_2\right) x_2$-variable cost of production as a function of inputs of production factors,
$c^f\left(x_1, x_2\right)=d$-fixed cost of production,
$c(y)$-minimum cost of producing $y$ output units, derived as an objective function corresponding to an optimal solution to problem ( $\mathrm{P} 2 \mathrm{~m})$, $\pi(y)=r(y)-c(y)=p(y) y-c(y)$-firm’s profit as a function of output level, $\pi\left(x_1, x_2\right)=r\left(x_1, x_2\right)-c^{\text {tot }}\left(x_1, x_2\right)$-firm’s profit as a function of inputs of production factors.

# 微观经济学代考

## 经济代写|微观经济学代写Microeconomics代考|Dynamic Approach

$\mathbf{b}(t)=\left(b_1(t), b_2(t)\right)>0$ – 生产要素的时变资源向量， $w(t)=f\left(b_1(t), b_2(t)\right)$ – 由于 生产要素的限制，时变产出水平受到限制， $\overline{\mathbf{x}}^G(t)$ – 关于资源无限的生产要素投入的利 润最大化问题的最优解， $\widetilde{\mathbf{x}}^G(t)$ – 生产要素资源无限时生产成本最小化问题的最优解， $\bar{y}^G(t)$ – 生产要素无限资源下产量水平利润最大化问题的最优解。

$\backslash$ begin{aligned $} \backslash$ pi $\backslash$ mathbf ${x}(t)) \&=r(\backslash$ mathbf ${x}(t))-c^{\wedge}{t$ ot $} \backslash$ mathbf $\left.{x}(t)\right) \backslash(4.217) \&=\backslash l e f t{p(t)$
(4.218) $\quad x_i(t) \leq b_i(t) \quad i=1,2$
(4.219) $\quad \mathbf{x}(t) \geq \mathbf{0}$

## 经济代写|微观经济学代写Microeconomics代考|Monopoly—Long-Term Strategy

$\mathbf{x}=\left(x_1, x_2\right) \geq(0,0)$-生产要素投入向量，
$y=f\left(x_1, x_2\right)$-输出电平，
$p(y)>0, \frac{\mathrm{d} p(y)}{\mathrm{d} y}<0$ – 垄断制造的产品价格作为产品供给的递减函数，由垄断设定， $\mathbf{c}(\mathbf{x})=\left(c_1\left(x_1\right), c_2\left(x_2\right)\right)>(0,0), \frac{\mathrm{d} c_i\left(x_i\right)}{\mathrm{d} x_i}>0, \quad i=1,2$-生产要素价格的向量，

$r(y)=p(y) y$ – 作为产品供应函数的制成品销售收入 (营业额)，
$r\left(x_1, x_2\right)=p\left(f\left(x_1, x_2\right)\right) f\left(x_1, x_2\right)$ – 制成品销售收入 (营业额) 作为生产要素投入 的函数， $c^{\text {tot }}\left(x_1, x_2\right)=c_1\left(x_1\right) x_1+c_2\left(x_2\right) x_2+d$-作为生产要素投入的非线性函 数的总生产成本，
$c^v\left(x_1, x_2\right)=c_1\left(x_1\right) x_1+c_2\left(x_2\right) x_2$-可变生产成本作为生产要素投入的函数，
$c^f\left(x_1, x_2\right)=d$ – 固定生产成本，
$c(y)$ – 最低生产成本 $y$ 输出单元，导出为对应于问题最优解的目标函数 ( $\mathrm{P} 2 \mathrm{~m})$ ，
$\pi(y)=r(y)-c(y)=p(y) y-c(y)-$ 公司的利润作为产出水平的函数，
$\pi\left(x_1, x_2\right)=r\left(x_1, x_2\right)-c^{\text {tot }}\left(x_1, x_2\right)$ – 公司的利润作为生产要素投入的函数。

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址，相关账户，以及课程名称，Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明，让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb，费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵)，报价后价格觉得合适，可以先付一周的款，我们帮你试做，满意后再继续，遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款，全款，周付款，周付款一方面方便大家查阅自己的分数，一方面也方便大家资金周转，注意:每周固定周一时先预付下周的定金，不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

myassignments-help擅长领域包含但不是全部: