经济代写|博弈论代写Game Theory代考|UTILIZATION OF AUTOMATA IN GAME THEORY

相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


经济代写|博弈论代写Game Theory代考|The Utilization of Finite Automata in Game Theory

Finite Automata is one of the simplest types of automata that is used to represent the players’ behaviors in different games. In 2000, Dodis, et al. (2000) were the first who formalized the idea of finite automata in prisoner’s dilemma instead of modeling players as polynomially bounded Turing Machine.

The study presented in (Maenner, 2008) shows that infinitely repeated games, such as prisoner’s dilemma and Matching Pennies, have problems in learning and representing the strategies. Therefore, the study introduced dynamic systems where agents start the game with randomly chosen strategies which are represented by finite state automata. The agents are also allowed to change their strategies during the game.

The work presented by Bouhmala and Granmo (2010) shows the benefits of finite learning automata in helping agents to find the action that minimizes the expected number of penalties received, or maximizes the expected number of payoffs received.

According to Andreozzi, (2013), the author discusses the emergence of cooperation in repeated TrustMini games. The study focuses mainly on those games played by finite automaton in sequential game. Each state in the finite automaton is associated to a strategy, which is the strategy the automaton plays when in the state. The importance of this study is the result which shows that finite automaton plays an important role in representing the players’ behavior.

According to Faella, et al. (2014), the authors are interested in determining if there exists a strategy of the protagonist that allows to select only behaviors fulfilling the specification in the context of verification of open systems and program synthesis. The research considers timed games, where the game graph is a timed automaton. The model presents an automata-theoretic approach to solve the addressed games. The core of this model is based on translating the timed automaton $\mathrm{A}$, and modeling the game graph into a tree automaton $\mathrm{A}^{\mathrm{T}}$ accepting all trees that correspond to a strategy of the protagonist. The results shows that the model can solve time games (e.g., Rabin and CTL) in exponential time.

El-Seidy (2015) studies the effect of noise on the degree of relatedness between the players, with respect to the behavior of strategies and its payoff. The model considers the repeated prisoners’ dilemma game, and any strategy represented by a finite two -state of automaton. With the assistance from finite automaton, the analysis showed that the noise has an impact on the performance of the players’ strategies with respect to some constant values.

The role of game theory as a formal tool for interacting entities is discusses in (Burkov \& Chaib-draa, 2015). The paper is approaching the complexity of computing equilibria in game theory through finite automata. They proposed a procedure which determines the strategy profiles as finite automata. The strategy profiles is implementing as automaton of a set of states $Q$ with initial state $q^0 \in Q$, a decision function $f=\left(f_i\right)_{i \in N}$, where $f_i: Q \mapsto \Delta\left(A_i\right)$ is the decision function of player $i$, and of a transition function $\tau$ : $Q \times A \mapsto Q$, which identifies the next state of the automaton. The analysis released that the proposed algorithm terminates in finite time and always return a non-empty subset of approximate subgame-perfect equilibria payoff profiles in any repeated games.

经济代写|博弈论代写Game Theory代考|The Utilization of Adaptive Automata in Game Theory

Adaptive automata-based models have been presented as powerful tools for defining complex languages. In order for adaptive automata to do self-modification, adaptive acts adhered to their state-transition rules are activated whenever the transition is used. Adaptive mechanism can be defined as adaptive actions which change the behavior of adaptive automata by modifying the set of rules defining it.

The work presented by Bertelle (2002) has focused on the models which can be used for simulating Prisoner’s Dilemma. The work showed how existing models and algorithms, in game theory, can be used with automata for representing the behaviors of players. The dynamical and adaptive properties can be described in term of specific operators based on genetic algorithms. In addition, the work showed that genetic operators on probabilistic automata enable the adaptive behavior to be modeled for prisoner dilemma strategies.

According to Ghnemat (2005), the author uses genetic algorithms to generate adaptive behaviors to be applied for modeling an adaptive strategy for the prisoner dilemma. They used adaptive automatabased model for the modeling agent behavior. According to Ghnemat et al.(2006), the researchers pay more attention to the iterated prisoner dilemma. An original evaluative probabilistic automaton was created for strategy modeling.

It has been shown that genetic automata are well-adapted to model adaptive strategies. As a result, we noticed that modeling the player behavior needs some adaptive attributes. However, the computable models related to genetic automata are good tools to model such adaptive strategy.

The work presented in Zhang (2009) has formed the collection of automata in a tree-like structure, and the modification of action possibility continued at different levels, according to the reward signs provided for all hierarchical levels.

Adaptive automata have computational power equivalent to a Turing Machine. Thus, strategies represented by adaptive automata may show more complex behaviors than the ones described by finite automata. For instance, learning mechanisms can be constructed using adaptive automata to represent adaptive learning mechanism based on specific input parameters.

However, finite automata are a particular case of adaptive automata. If the automata have no rules associating adaptive functions to transitions, the model can be reduced to finite automata. This characteristic is considered important to use adaptive automata naturally where finite automata are required.

博弈论代考

经济代写|博弈论代写Game Theory代考|The Utilization of Finite Automata in Game Theory

有限自动机是最简单的自动机类型之一,用于表示玩家在不同游戏中的行为。2000 年,Dodis 等人。(2000) 是第一个在囚徒困境中将有限自动机的概念形式化而不是将玩家建模为多项式有界图灵机的人。

(Maenner, 2008) 中提出的研究表明,无限重复的游戏,例如囚徒困境和匹配便士,在学习和表示策略方面存在问题。因此,该研究引入了动态系统,在该系统中,代理人以随机选择的策略开始游戏,这些策略由有限状态自动机表示。代理人也可以在游戏过程中改变他们的策略。

Bouhmala 和 Granmo (2010) 提出的工作展示了有限学习自动机在帮助代理人找到最小化收到的预期惩罚数量或最大化收到的预期支付数量的操作方面的好处。

根据 Andreozzi (2013),作者讨论了重复 TrustMini 游戏中合作的出现。研究主要集中于有限自动机在序贯博弈中所玩的那些博弈。有限自动机中的每个状态都与一个策略相关联,该策略是自动机处于该状态时所采用的策略。这项研究的重要性在于表明有限自动机在代表玩家行为方面起着重要作用的结果。

根据 Faella 等人的说法。(2014),作者有兴趣确定是否存在主角策略,该策略允许在开放系统验证和程序综合的背景下仅选择满足规范的行为。该研究考虑了定时游戏,其中游戏图是一个定时自动机。该模型提出了一种自动机理论方法来解决所提出的游戏。该模型的核心是基于翻译时间自动机A,并将游戏图建模为树自动机A吨接受与主角的策略相对应的所有树。结果表明该模型可以在指数时间内解决时间博弈(例如,Rabin 和 CTL)。

El-Seidy (2015) 研究了噪音对玩家之间相关程度的影响,涉及策略行为及其收益。该模型考虑了重复的囚徒困境博弈,以及由有限二态自动机表示的任何策略。在有限自动机的帮助下,分析表明噪声对玩家策略的性能有一定的影响。

博弈论作为交互实体的正式工具的作用在 (Burkov \& Chaib-draa, 2015) 中进行了讨论。本文通过有限自动机来解决博弈论中计算均衡的复杂性。他们提出了一种将策略配置文件确定为有限自动机的程序。策略配置文件作为一组状态的自动机实现问初始状态q0∈问, 一个决策函数F=(F我)我∈否, 在哪里F我:问↦丁(A我)是玩家的决策函数我, 和一个转移函数吨 : 问×A↦问, 它标识自动机的下一个状态。分析表明,所提出的算法在有限时间内终止,并且在任何重复博弈中始终返回近似子博弈完美均衡收益曲线的非空子集。

经济代写|博弈论代写Game Theory代考|The Utilization of Adaptive Automata in Game Theory

基于自适应自动机的模型已被视为定义复杂语言的强大工具。为了让自适应自动机进行自我修改,只要使用转换,就会激活遵守其状态转换规则的自适应行为。自适应机制可以定义为自适应动作,它通过修改定义自适应自动机的规则集来改变自适应自动机的行为。

Bertelle (2002) 提出的工作集中在可用于模拟囚徒困境的模型上。这项工作展示了博弈论中现有的模型和算法如何与自动机一起使用来表示玩家的行为。动态和自适应特性可以用基于遗传算法的特定算子来描述。此外,该工作表明,概率自动机上的遗传算子可以为囚徒困境策略建模适应性行为。

根据 Ghnemat (2005),作者使用遗传算法生成适应性行为,用于为囚徒困境的适应性策略建模。他们使用基于自适应自动机的模型来建模代理行为。根据 Ghnemat et al.(2006),研究人员更加关注迭代囚徒困境。为策略建模创建了一个原始的评估概率自动机。

已经表明,遗传自动机非常适合模型自适应策略。因此,我们注意到对玩家行为进行建模需要一些自适应属性。然而,与遗传自动机相关的可计算模型是模拟这种自适应策略的好工具。

Zhang (2009) 提出的工作已经形成了树状结构的自动机集合,并且根据为所有层级提供的奖励标志,在不同层级继续修改动作可能性。

自适应自动机具有相当于图灵机的计算能力。因此,自适应自动机所代表的策略可能表现出比有限自动机所描述的更复杂的行为。例如,可以使用自适应自动机来构建学习机制,以表示基于特定输入参数的自适应学习机制。

然而,有限自动机是自适应自动机的一个特例。如果自动机没有将自适应函数与转换相关联的规则,则该模型可以简化为有限自动机。这一特性被认为对于在需要有限自动机的地方自然地使用自适应自动机很重要。

经济代写|博弈论代写Game Theory代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Scroll to Top