相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
统计代写|时间序列分析代写Time-Series Analysis代考|Markov Switching Models
The Markov switching model is widely used in econometrics and other disciplines. It involves multiple structures that characterize the time series variable behaviors in different regimes and permits switching between these structures. The Markov switching model provides such a kind of switching mechanism so that it is controlled by an unobservable state variable which follows a first-order Markov chain. It is sometimes also referred to as the (Markov) regime switching model. FrühwirthSchnatter (2006) gives a detailed Bayesian analysis of this model. Kim and Nelson (1999) elaborate on a class of state space models with Markov switching. For a time series $X_t$, a general Markov switching model is of the form
$$
\begin{aligned}
X_t= & \mu_{S_t}+\mathbf{Y}t \boldsymbol{\beta}{S_t}+\varphi_{1, S_t}\left(X_{t-1}-\mu_{S_{t-1}}-\mathbf{Y}{t-1} \boldsymbol{\beta}{S_{t-1}}\right)+\cdots \
& +\varphi_{p, S_t}\left(X_{t-p}-\mu_{S_{t-p}}-\mathbf{Y}{t-p} \boldsymbol{\beta}{S_{t-p}}\right)+\varepsilon_t, \varepsilon_t \sim \mathrm{WN}\left(0, \sigma_{S_t}^2\right)
\end{aligned}
$$
where $\mathbf{Y}t=\left(Y{t 1}, Y_{t 2}, \cdots, Y_{t k}\right)$ are the input variables (exogenous regressors), $\boldsymbol{\beta}{S_t}$ are the corresponding regression coefficient vectors, and $S_t$ is a Markov chain for regimes. Here a regime is viewed as a state that the Markov chain may take. Assume that all the possible values of state variable $S_t$ are $S={1: K}$. Then $S_t$ satisfies the Markov property $$ P\left(S_t=j \mid S{t-1}=i, S_{t-2}=s_{t-2}, \cdots, S_1=s_1\right)=P\left(S_t=j \mid S_{t-1}=i\right)=p_{i j}
$$
where $j, i, s_{t-2}, \cdots, s_1 \in S$ and $p_{i j}$ is called the one-step transition probability from state $i$ to state $j$. And the state transition is governed by the (state) transition (probability) matrix $\mathbf{P}=\left[p_{i j}\right]$. Besides, the error $\varepsilon_t$ is also written as $\varepsilon_t=\sigma_{S_t} \eta_t$ where $\eta_t \sim \mathrm{WN}(0,1)$. And it is often assumed that the error $\varepsilon_t$ is normally distributed, namely, $\varepsilon_t \sim \operatorname{iidN}\left(0, \sigma_{S_t}^2\right)$.
If there are no exogenous regressors in Eq. (8.17), it is reduced to
$$
X_t=\mu_{S_t}+\varphi_{1, S_t}\left(X_{t-1}-\mu_{S_{t-1}}\right)+\cdots+\varphi_{p, S_t}\left(X_{t-p}-\mu_{S_{l-p}}\right)+\varepsilon_t, \varepsilon_t \sim \mathrm{WN}\left(0, \sigma_{S_t}^2\right)
$$
and called the Markov switching autoregressive model.
统计代写|时间序列分析代写Time-Series Analysis代考|Deterministic Trend and Stochastic Trend
What is a stochastic trend in a time series? Let us have a look at the following example before answering that question.
Example 9.1 (A Time Series with Trend Components) Consider the time series $X_t=\alpha+\beta t+\eta_t$ where $\beta \neq 0$ and $\eta_t=\eta_{t-1}+\varepsilon_t, \varepsilon_t \sim \mathrm{WN}(0,1)$ is a random walk. Its time series plot is shown in Fig. 9.1 when $\alpha=0.3$ and $\beta=0.2$. Clearly there is a deterministic trend in the time series, and thus it is nonstationary. At the same time, the series has no seasonality. Furthermore, if we detrend the deterministic trend from the time series, we arrive at the series $\eta_t$ that is a random walk and also nonstationary, seeing Fig. 9.2. In other words, there are two components in the time series, which of both make it nonstationary. One component is well known to us, that is, the deterministic trend. Another is new and will be defined below. In addition, if we difference the deterministic-trend-removed time series $\eta_t$, then the differenced series is the white noise $\nabla \eta_t=\varepsilon_t$ and so stationary, seeing Figs. 9.3 and 9.4.
Definition 9.1 (1) If a time series is still nonstationary after its deterministic components are removed from it, then it is said to have a stochastic (random) trend as long as the ordinarily differenced series of the deterministic-componentremoved series is stationary. (2) If a nonstationary time series has no deterministic components, then it is said to possess a stochastic (random) trend as long as its ordinarily differenced series is stationary.
Remarks on Definition 9.1:
- A time series with a stochastic trend should satisfy two conditions: (1) it is nonstationary, and if it has deterministic components (deterministic trend and/or seasonality), then the deterministic-component-removed series is still nonstationary, and (2) the ordinarily differenced series is stationary, which also guarantees that the stochastic component is the stochastic trend, not stochastic seasonality.
- The time series $X_t=\alpha+\beta t+\eta_t$ in Example 9.1 belongs to the case (1) of Definition 9.1, and note that it has both a deterministic trend and a stochastic trend. If we consider the random walk $Y_t=Y_{t-1}+\varepsilon_t$, it obviously belongs to the case (2) of Definition 9.1.
- It is sometimes not easy to distinguish between a stochastic trend and a deterministic trend in a time series. The background of data often helps distinguish them. For example, logarithm price series of financial products tend to possess a stochastic trend, while macroeconomic yearly or seasonally adjusted time series usually have a deterministic trend (and may sometimes also have a stochastic trend). Two real examples are given in Example 9.2 and Problem 9.13.

时间序列分析代考
统计代写|时间序列分析代写Time-Series Analysis代考|Markov Switching Models
马尔可夫转换模型广泛应用于计量经济学和其他学科。它涉及多个结构,这些结构表征 了不同制度下的时间序列变量行为,并允许在这些结构之间进行切换。马尔可夫切换模 型提供了这样一种切换机制,它由一个不可观察的状态变量控制,该状态变量遵循一阶 马尔可夫链。它有时也被称为(马尔可夫)制度转换模型。FrühwirthSchnatter (2006) 对该模型进行了详细的贝叶斯分析。Kim 和 Nelson (1999) 详细阐述了一类具有马尔可 夫切换的状态空间模型。对于一个时间序列 $X_t$ ,一般马尔可夫切换模型的形式是
$$
X_t=\mu_{S_t}+\mathbf{Y} t \boldsymbol{\beta} S_t+\varphi_{1, S_t}\left(X_{t-1}-\mu_{S_{t-1}}-\mathbf{Y} t-1 \boldsymbol{\beta} S_{t-1}\right)+\cdots \quad+\varphi_{p, S_t}\left(X_{t-p}-\right.
$$
在哪里 $\mathbf{Y} t=\left(Y t 1, Y_{t 2}, \cdots, Y_{t k}\right)$ 是输入变量 (外生回归变量), $\boldsymbol{\beta} S_t$ 是相应的回归系 数向量,并且 $S_t$ 是制度的马尔可夫链。在伩里,政权被视为马尔可夫链可能采取的状 态。假设状态变量的所有可能值 $S_t$ 是 $S=1: K$. 然后 $S_t$ 满足马尔可夫性质
$$
P\left(S_t=j \mid S t-1=i, S_{t-2}=s_{t-2}, \cdots, S_1=s_1\right)=P\left(S_t=j \mid S_{t-1}=i\right)=p_{i j}
$$
在哪里 $j, i, s_{t-2}, \cdots, s_1 \in S$ 和 $p_{i j}$ 称为状态的一步转移概率 $i$ 陈述 $j$. 状态转移由(状 态) 转移 (概率) 矩阵控制 $\mathbf{P}=\left[p_{i j}\right]$. 此外,错误 $\varepsilon_t$ 也写成 $\varepsilon_t=\sigma_{S_t} \eta_t$ 在哪里 $\eta_t \sim \operatorname{WN}(0,1)$. 并且通常认为错误 $\varepsilon_t$ 是正态分布的,即 $\varepsilon_t \sim \operatorname{iidN}\left(0, \sigma_{S_t}^2\right)$. 如果方程式中没有外生回归变量。(8.17),它简化为
$$
X_t=\mu_{S_t}+\varphi_{1, S_t}\left(X_{t-1}-\mu_{S_{t-1}}\right)+\cdots+\varphi_{p, S_t}\left(X_{t-p}-\mu_{S_{l-p}}\right)+\varepsilon_t, \varepsilon_t \sim \mathrm{WN}\left(0, \sigma_{S_t}^2\right)
$$
并称为马尔可夫切换自回归模型。
统计代写|时间序列分析代写Time-Series Analysis代考|Deterministic Trend and Stochastic Trend
什么是时间序列中的随机趋势? 在回答这个问题之前,让我们先看看下面的例子。
示例 9.1 (具有趋势成分的时间序列) 考虑时间序列 $X_t=\alpha+\beta t+\eta_t$ 在哪里 $\beta \neq 0$ 和 $\eta_t=\eta_{t-1}+\varepsilon_t, \varepsilon_t \sim \mathrm{WN}(0,1)$ 是随机游走。其时间序列图如图 9.1 所小。 $\alpha=0.3$ 和 $\beta=0.2$. 显然,时间序列中存在确定性趋势,因此它是非平稳的。同时,该系列没有枼 节性。此外,如果我们从时间序列中去除确定性趋势,我们就得到了序列 $\eta_t$ 这是一个随 机游走,也是非平稳的,见图 9.2。换句话说,时间序列中有两个组成部分,这两个组 成部分都使其不稳定。一个组成部分是我们所熟知的,即确定性趋势。另一个是新的, 将在下面定义。此外,如果我们区分确定性趋势去除时间序列 $\eta_t$ ,那么差分级数就是白 橾声 $\nabla \eta_t=\varepsilon_t$ 如此静止,见图。9.3 和 9.4。
定义 9.1 (1) 如果一个时间序列在去除其确定性成分后仍然是非平稳的,那么只要确定性 成分去除序列的常差序列是平稳的,就称它具有随机 (随机) 趋势。(2) 如果一个非平 稳时间序列没有确定性成分,那么只要其通常差分序列是平稳的,就可以说它具有随机 (随机) 趋势。
关于定义 9.1 的注释:
- 具有随机趋势的时间序列应满足两个条件: (1) 它是非平稳的,如果它具有确定性 成分(确定性趋势和/或季节性),则去除确定性成分的序列仍然是非平稳的,以及
(2)常差序列是平稳的,这也保证了随机成分是随机趋势,而不是随机季节性。 - 时间序列 $X_t=\alpha+\beta t+\eta_t$ 例9.1中的属于定义9.1的情呪(1),注意它既有确定性 趋势又有随机性趋势。如果我们考虑随机游走 $Y_t=Y_{t-1}+\varepsilon_t$ ,显然属于定义9.1的 情况 (2)。
- 有时不容易区分时间序列中的随机趋势和确定性趋势。数据背景通常有助于区分它 们。例如,金融产品的对数价格序列往往具有随机趋势,而宏观经济年度或季节性 调整时间序列通常具有确定性趋势 (有时也可能具有随机趋势) 。例 9.2 和习题 9.13 给出了两个真实的例子。

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。