数学代写|拓扑学代写Topology代考|THE DEFINITION AND SOME EXAMPLES

相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


数学代写|拓扑学代写Topology代考|THE DEFINITION AND SOME EXAMPLES

Let $X$ be a non-empty set. A class $\mathrm{T}$ of subsets of $X$ is called a topology on $X$ if it satisfies the following two conditions:
(1) the union of every class of sets in $T$ is a set in $T$;
(2) the intersection of every finite class of sets in $T$ is a set in $T$.
A topology on $X$ is thus a class of subsets of $X$ which is closed under the formation of arbitrary unions and finite intersections. A topological space consists of two objects: a non-empty set $X$ and a topology $\mathrm{T}$ on $X$. The sets in the class $T$ are called the open sets of the topological space $(X, T)$, and the elements of $X$ are called its points. It is customary to denote the topological space $(X, T)$ by the symbol $X$ which is used for its underlying set of points. No harm can come from this practice if one clearly understands that a topological space is more than merely a non-empty set: it is a non-empty set together with a specific topology on that set. We shall often be considering several topologies on a single given set, and in these circumstances distinct topologies make the set into distinct topological spaces. We observe that the empty set and the full space are always open sets in every topological space, since they are the union and intersection of the empty class of sets, which is a subclass of every topology.

We now list several simple examples of topological spaces. In order to exhibit a topological space, one must specify a non-empty set, tell which subsets are to be considered the open sets, and verify that this given class of sets satisfies conditions (1) and (2) above. In the examples which follow, we leave this third step to the reader.

Example 1. Let $X$ be any metric space, and let the topology be the class of all subsets of $X$ which are open in the sense of the definition in Sec. 10. This is called the usual topology on a metric space, and we say that these sets are the open sets generated by the metric on the space. Metric spaces are the most important topological spaces, and whenever we speak of a metric space as a topological space, it is understood (unless we say something to the contrary) that its topology is the usual topology described here.

数学代写|拓扑学代写Topology代考|ELEMENTARY CONCEPTS

We have taken open sets as the starting point in our development of topology, and we now define a number of other basic concepts in terms of open sets. Most of these will be familiar to the reader from the previous chapter, and he will observe that in every case the definition given here is a strict generalization of our earlier definition or some equivalent form of it.

A closed set in a topological space is a set whose complement is open. The following theorem is an immediate consequence of Eqs. 2-(2) and the assumed properties of open sets.

Theorem A. Let $X$ be a topological space. Then (1) any intersection of closed sets in $X$ is closed; and (2) any finite union of closed sets in $X$ is closed.
By considering the empty class of closed sets, we see at once that the empty set and the full space-its union and intersection-are always slosed sets in every topological space.

If $A$ is a subset of a topological space, then its closure (denoted by $\bar{A}$ ) is the intersection of all closed supersets of $A$. It is easy to see that the closure of $A$ is a closed superset of $A$ which is contained in every closed superset of $A$, and that $A$ is closed $\Leftrightarrow A=\bar{A}$. A subset $A$ of a topological space $X$ is said to be dense (or everywhere dense) if $\bar{A}=X$, and $X$ is called a separable space if it has a countable dense subset. For reasons which will become clear at the end of this section, we summarize the main facts about the operation of forming closures in the following theorem. Its proof is a direct application of the above statements.

Theorem B. Let $X$ be a topological space. If $A$ and $B$ are arbitrary subsets of $X$, then the operation of forming closures has the following four properties: (1) $\bar{\emptyset}=\emptyset$; (2) $A \subseteq \bar{A} ;$ (3) $\bar{A}=\bar{A}$; and (4) $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
A neighborhood of a point (or a set) in a topological space is an open set which contains the point (or the set). A class of neighborhoods of a point is called an open base for the point (or an open base at the point) if each neighborhood of the point contains a neighborhood in this class. In the case of a point in a metric space, an open sphere centered on the point is a neighborhood of the point, and the class of all such open spheres is an open base for the point. Our next theorem gives a useful characterization (in terms of neighborhoods) of the closure of a set.

拓扑学代考

数学代写|拓扑学代写Topology代考|THE DEFINITION AND SOME EXAMPLES

让X是一个非空集。一类吨的子集X称为拓扑X如果它满足以下两个条件:
(1) 中每一类集合的并集吨是一个集合吨;
(2) 中每个有限类集合的交集吨是一个集合吨.
上的拓扑X因此是一类子集X它在任意并集和有限交集的形成下是封闭的。拓扑空间由两个对象组成:一个非空集X和拓扑吨在X. 类中的集合吨称为拓扑空间的开集(X,吨), 和元素X称为它的点。通常表示拓扑空间(X,吨)通过符号X用于其基础点集。如果一个人清楚地理解拓扑空间不仅仅是一个非空集:它是一个非空集以及该集上的特定拓扑,那么这种做法不会有任何危害。我们通常会在一个给定的集合上考虑多个拓扑,在这些情况下,不同的拓扑使集合成为不同的拓扑空间。我们观察到空集和满空间在每个拓扑空间中总是开集,因为它们是空集集的并集和交集,而空集集是每个拓扑的子集。

我们现在列出拓扑空间的几个简单例子。为了展示一个拓扑空间,必须指定一个非空集,告诉哪些子集被认为是开集,并验证这个给定的集合类满足上面的条件(1)和(2)。在下面的示例中,我们将第三步留给读者。

示例 1. 让X是任何度量空间,并让拓扑是所有子集的类X在 Sec 中的定义意义上是开放的。10. 这称为度量空间上的通常拓扑,我们称这些集合是空间上的度量生成的开集。度量空间是最重要的拓扑空间,每当我们将度量空间称为拓扑空间时,都可以理解(除非我们说相反的话)它的拓扑是这里描述的通常拓扑。

数学代写|拓扑学代写Topology代考|ELEMENTARY CONCEPTS

我们已经将开集作为拓扑学发展的起点,现在我们根据开集定义了许多其他基本概念。上一章的读者会熟悉其中的大部分内容,他会发现这里给出的每种情况下的定义都是对我们早先定义或它的某种等价形式的严格概括。

拓扑空间中的闭集是补集是开集。以下定理是方程式的直接结果。2-(2) 和假定的开集性质。

定理 A. 让X是一个拓扑空间。那么 (1) 中闭集的任意交集X关闭了; 和 (2) 在X关闭了。
通过考虑闭集的空类,我们立即看到空集和满空间——它的并集和交集——在每个拓扑空间中总是松集。

如果A是拓扑空间的一个子集,那么它的闭包(表示为A¯) 是所有闭超集的交集A. 很容易看出闭包A是一个封闭的超集A它包含在的每个封闭超集中A, 然后A关闭了⇔A=A¯. 一个子集A拓扑空间的X如果A¯=X, 和X如果它有可数的稠密子集,则称为可分离空间。由于在本节末尾将变得清晰的原因,我们在以下定理中总结了有关形成闭包操作的主要事实。它的证明是上述命题的直接应用。

定理 B. 让X是一个拓扑空间。如果A和乙是任意子集X, 那么形成闭包的操作有以下四个性质: (1)∅¯=∅; (2) A⊆A¯; (3) A¯=A¯; 和 (4)A∪乙¯=A¯∪乙¯.
拓扑空间中点(或集)的邻域是包含该点(或集)的开集。如果点的每个邻域都包含此类中的一个邻域,则该点的一类邻域称为该点的开基(或该点的开基)。对于度量空间中的点,以该点为中心的开球是该点的邻域,并且所有此类开球的类是该点的开基。我们的下一个定理给出了集合闭包的有用特征(根据邻域)。

数学代写|拓扑学代写Topology代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Scroll to Top