# 数学代写|偏微分方程代写partial difference equations代考|Math442

## 数学代写|偏微分方程代写partial difference equations代考|Relationship to Least Squares

In this section we show that the Fourier series expansion of $f(x)$ gives the best approximation of $f(x)$ in the sense of least squares. That is, if one minimizes the squares of differences between $f(x)$ and the $n^{\text {th }}$ partial sum of the series
$$\frac{a_0}{2}+\sum_{k=1}^{\infty}\left(a_k \cos \frac{k \pi}{L} x+b_k \sin \frac{k \pi}{L} x\right)$$
then the coefficients $a_0, a_k$ and $b_k$ are exactly the Fourier coefficients given by (5.3.6)-(5.3.7).
Let $I\left(a_0, a_1, \cdots, a_n, b_1, b_2, \cdots, b_n\right)$ be defined as the “sum” of the squares of the differences, i.e.
$$I=\int_{-L}^L\left[f(x)-s_n(x)\right]^2 d x$$
where $s_n(x)$ is the $n^{\text {th }}$ partial sum
$$s_n(x)=\frac{a_0}{2}+\sum_{k=1}^n\left(a_k \cos \frac{k \pi}{L} x+b_k \sin \frac{k \pi}{L} x\right) .$$
In order to minimize the integral $I$, we have to set to zero each of the first partial derivatives,
$$\begin{array}{lrl} & \frac{\partial I}{\partial a_0}=0, \ \frac{\partial I}{\partial a_j}=0, & j=1,2, \cdots, n \ \frac{\partial I}{\partial b_j}=0, & j=1,2, \cdots, n . \end{array}$$
Differentiating the integral we find
\begin{aligned} \frac{\partial I}{\partial a_0} &=\int_{-L}^L 2\left[f(x)-s_n(x)\right] \frac{\partial}{\partial a_0}\left[f(x)-s_n(x)\right] d x \ &=-2 \int_{-L}^L\left[f(x)-s_n(x)\right] \frac{1}{2} d x \ &=-\int_{-L}^L\left[f(x)-\frac{a_0}{2}-\sum_{k=1}^n\left(a_k \cos \frac{k \pi}{L} x+b_k \sin \frac{k \pi}{L} x\right)\right] d x \end{aligned}

## 数学代写|偏微分方程代写partial difference equations代考|Term by Term Differentiation

In order to check that the solution obtained by the method of separation of variables satisfies the PDE, one must be able to differentiate the infinite series.

1. A Fourier series that is continuous can be differentiated term by term if $f^{\prime}(x)$ is piecewise smooth. The result of the differentiation is the Fourier series of $f^{\prime}(x)$.
2. A Fourier cosine series that is continuous can be differentiated term by term if $f^{\prime}(x)$ is piecewise smooth. The result of the differentiation is the Fourier sine series of $f^{\prime}(x)$.
3. A Fourier sine series that is continuous can be differentiated term by term if $f^{\prime}(x)$ is piecewise smooth and $f(0)=f(L)=0$. The result of the differentiation is the Fourier cosine series of $f^{\prime}(x)$.
Note that if $f(x)$ does not vanish at $x=0$ and $x=L$ then the result of differentiation is given by the following formula:
$$f^{\prime}(x) \sim \frac{1}{L}[f(L)-f(0)]+\sum_{n=1}^{\infty}\left{\frac{n \pi}{L} b_n+\frac{2}{L}\left[(-1)^n f(L)-f(0)\right]\right} \cos \frac{n \pi}{L} x .$$
Note that if $f(L)=f(0)=0$ the above equation reduces to term by term differentiation.
Example 12
Given the Fourier sine series of $f(x)=x$,
$$x \sim 2 \sum_{n=1}^{\infty} \frac{L}{n \pi}(-1)^{n+1} \sin \frac{n \pi}{L} x .$$
Since $f(L)=L \neq 0$, we get upon differntiation using (5.7.1)
$$1 \sim \frac{1}{L}[L-0]+\sum_{n=1}^{\infty}{\frac{n \pi}{L} \underbrace{2 \frac{L}{n \pi}(-1)^{n+1}}_{b_n}+\frac{2}{L}(-1)^n L} \cos \frac{n \pi}{L} x$$
The term in braces is equal
$$2(-1)^{n+1}+2(-1)^n=0 .$$
Therefore the infinite series vanishes and one gets
$$1 \sim 1 \text {, }$$
that is, the Fourier cosine series of the constant function 1 is 1 .

# 偏微分方程代考

## 数学代写|偏微分方程代写partial difference equations代考|Relationship to Least Squares

$$\frac{a_0}{2}+\sum_{k=1}^{\infty}\left(a_k \cos \frac{k \pi}{L} x+b_k \sin \frac{k \pi}{L} x\right)$$

$$I=\int_{-L}^L\left[f(x)-s_n(x)\right]^2 d x$$

$$s_n(x)=\frac{a_0}{2}+\sum_{k=1}^n\left(a_k \cos \frac{k \pi}{L} x+b_k \sin \frac{k \pi}{L} x\right) .$$

$$\frac{\partial I}{\partial a_0}=0, \frac{\partial I}{\partial a_j}=0, \quad j=1,2, \cdots, n \frac{\partial I}{\partial b_j}=0, \quad j=1,2, \cdots, n .$$

$$\frac{\partial I}{\partial a_0}=\int_{-L}^L 2\left[f(x)-s_n(x)\right] \frac{\partial}{\partial a_0}\left[f(x)-s_n(x)\right] d x \quad=-2 \int_{-L}^L\left[f(x)-s_n(x)\right] \frac{1}{2} d x=-\int_{-L}^L[f($$

## 数学代写|偏微分方程代写partial difference equations代考|Term by Term Differentiation

1. 一个连续的傅里叶级数可以逐项微分如果 $f^{\prime}(x)$ 是分段光滑的。微分的结果是傅里叶级数 $f^{\prime}(x)$.
2. 连续的傅立叶余弦级数可以逐项微分如果 $f^{\prime}(x)$ 是分段光滑的。微分的结果是傅立叶正弦级数 $f^{\prime}(x)$.
3. 连续的傅立叶正弦级数可以逐项微分如果 $f^{\prime}(x)$ 是分段光滑的并且 $f(0)=f(L)=0$. 微分的结果是傅 立叶余弦级数 $f^{\prime}(x)$.
请注意，如果 $f(x)$ 不会消失在 $x=0$ 和 $x=L$ 则微分结果由下式给出:
请注意，如果 $f(L)=f(0)=0$ 上述等式简化为逐项微分。
例 12
给定的傅立叶正弦级数 $f(x)=x$ ，
$$x \sim 2 \sum_{n=1}^{\infty} \frac{L}{n \pi}(-1)^{n+1} \sin \frac{n \pi}{L} x .$$
自从 $f(L)=L \neq 0$, 我们使用 (5.7.1) 进行微分
$$1 \sim \frac{1}{L}[L-0]+\sum_{n=1}^{\infty} \frac{n \pi}{L} \underbrace{2 \frac{L}{n \pi}(-1)^{n+1}}_{b_n}+\frac{2}{L}(-1)^n L \cos \frac{n \pi}{L} x$$
大括号中的项是相等的
$$2(-1)^{n+1}+2(-1)^n=0$$
因此无限级数消失，一个人得到
$$1 \sim 1$$
也就是说，常数函数 1 的傅立叶余弦级数为 1 。

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址，相关账户，以及课程名称，Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明，让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb，费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵)，报价后价格觉得合适，可以先付一周的款，我们帮你试做，满意后再继续，遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款，全款，周付款，周付款一方面方便大家查阅自己的分数，一方面也方便大家资金周转，注意:每周固定周一时先预付下周的定金，不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ，我们的服务覆盖：Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

Scroll to Top