相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
电子工程代写|数字信号处理代写Digital Signal Processing代考|Medium Access Control (MAC) Protocol Design
Medium Access Control (MAC) layer design has been extensively studied in the context of DSRC and 4G-LTE, while only a limited amount of literature has investigated solutions for other types of radios that are expected to be available in next-generation automotive systems. Conventional MAC solutions are suitable for situations in which the velocity/position of the vehicles can be accurately predicted. However, this may not be the case for V2X communication systems operating at high frequencies, mainly due to the intrinsic variability of the channel. Moreover, most recent solutions lack consideration of some important KPIs like reliability and delay. In particular, mmWave radio links require new schemes to enable vehicles and infrastructures to quickly determine the best directions to establish directional links. This functionality can be hardly supported by traditional communication protocols, which are often significantly affected by the high speed of the nodes and by the presence of frequent blockages on the propagation path.
The above discussion makes apparent the need for innovative MAC protocol design, specifically tailored to future vehicular networks, as represented in Fig. 2 . This objective can be achieved by enabling multi-connectivity, thus coupling a highfrequency data plane with a lower frequency control plane, to support the required rates, while increasing the robustness of the communication [9].
The authors in [5] present a beam prediction technique based on periodical speed and position information exchanged among network nodes through DSRC messages. Using the acquired information, the system is then able to estimate the vehicle’s trajectory and derive the optimal beam orientation accordingly.
Beam design optimization is also being considered as a solution to maximize the data rate [32]. Results are consistent with the intuition that narrower beams should be used for users near the cell edge, where coverage is weaker.
In [8], a location-aided beamforming strategy is proposed to achieve ultrafast connectivity between nodes. In particular, adaptive channel estimation based on location information allows the estimation time to be substantially reduced.
Efficient beam alignment schemes can also be designed by extracting information from radar signals [24]. Simulations confirm that radars can be a useful source of side information and can help configure the mmWave V2I links.
In conclusion, although mmWave communication is a viable approach to provide high-bandwidth connectivity to future intelligent vehicles, innovative MAC-layer solutions should be engineered to overcome the limitations that prevent the direct employment of traditional communication protocols on high-frequency links.
电子工程代写|数字信号处理代写Digital Signal Processing代考|Network and Routing Protocol Design
While the literature on network protocols ${ }^3$ for legacy vehicular scenarios is quite rich, little work exists regarding the communication performance of the network layer (especially routing) in a next-generation V2X context. More specifically, traditional routing solutions can be classified into two categories, as reported in Fig. 3: (i) topology-based routing protocols, and (ii) position-based routing protocols.
Topology-Based Routing Protocols. These schemes use link information within the network to send the data packets from the source to the destination. In particular, proactive routing protocols continuously maintain up-to-date routes for all the valid destinations, thus guaranteeing low-latency packet forwarding but suffering from scalability issues. Reactive routing protocols, instead, establish the path to follow for packet delivery only when a message needs to be actually exchanged, thus saving precious bandwidth resources but increasing the latency to find a reliable route.
Position-Based Routing Protocols. These schemes do not require routing tables, but only use the position information of neighboring nodes to determine the next forwarding hop to the destination. Since those protocols are based only on local knowledge, they are considered more scalable and robust against topological changes. However, they exclusively rely on position information that may be inaccurate or unavailable (e.g., in tunnels or where the satellite signal is absent) [23], and may suffer large overheads or additional delays caused by collision and contention of the underlying MAC protocols.
In this context, the propagation characteristics and the directional nature of mmWave links bring both challenges and opportunities for routing protocol design. For instance, due to the presence of communication blockages, the shortest path connecting two network nodes (in terms of geographical or topological distance) is not necessarily the best, and may actually yield lower throughput and higher packet loss than a longer path. It is thus important to make a judicious selection of relaying nodes, for example trying to keep the number of hops to a minimum when using multi-hop communications to overcome an impaired direct path.
Recently, some works tried to design network layer protocols specifically tailored to multi-hop systems with directional antennas. In [4], the authors proposed an $O p t i-$ mal Geographic Routing Protocol (OGRP) that selects the appropriate multi-hop relays considering the specific features of mmWave propagation. Other solutions implement some sort of multipath routing that allows a vehicular node to establish multiple connections through different access technologies, besides using device-todevice (D2D) transmissions.
In [25], a multi-hop concurrent transmission scheme is proposed and, by properly breaking one single-hop low-rate link into multiple shorter high-rate links and allowing non-interfering nodes to transmit concurrently, the network resources can be efficiently used to improve the network throughput.

电子工程代写|数字信号处理代写Digital Signal Processing代考|Medium Access Control (MAC) Protocol Design
媒体访问控制 (MAC) 层设计已在 DSRC 和 4G-LTE 的背景下进行了广泛研究,而只有有限数量的文献调查了预计在下一代汽车系统中可用的其他类型无线电的解决方案。传统的MAC解决方案适用于可以准确预测车辆速度/位置的情况。然而,对于以高频运行的 V2X 通信系统,情况可能并非如此,这主要是由于信道的固有可变性。此外,大多数最新的解决方案缺乏对可靠性和延迟等一些重要 KPI 的考虑。特别是,毫米波无线电链路需要新的方案,使车辆和基础设施能够快速确定建立定向链路的最佳方向。
上面的讨论清楚地表明需要创新的 MAC 协议设计,特别是为未来的车辆网络量身定制,如图 2 所示。这个目标可以通过启用多重连接来实现,从而将高频数据平面与较低频率的控制平面耦合,以支持所需的速率,同时提高通信的稳健性 [9]。
[5] 中的作者提出了一种基于通过 DSRC 消息在网络节点之间交换的周期性速度和位置信息的波束预测技术。使用获取的信息,系统随后能够估计车辆的轨迹并相应地得出最佳光束方向。
波束设计优化也被视为最大化数据速率的解决方案 [32]。结果与直觉一致,即对于覆盖较弱的小区边缘附近的用户,应该使用较窄的波束。
在 [8] 中,提出了一种位置辅助波束成形策略来实现节点之间的超快连接。特别地,基于位置信息的自适应信道估计允许估计时间显着减少。
还可以通过从雷达信号中提取信息来设计高效的波束对准方案 [24]。仿真证实,雷达可以成为有用的辅助信息来源,并有助于配置毫米波 V2I 链路。
总之,尽管毫米波通信是为未来智能汽车提供高带宽连接的可行方法,但应设计创新的 MAC 层解决方案,以克服阻碍在高频链路上直接使用传统通信协议的局限性。
电子工程代写|数字信号处理代写Digital Signal Processing代考|Network and Routing Protocol Design
而关于网络协议的文献3对于遗留车辆场景的研究非常丰富,关于下一代 V2X 环境中网络层(尤其是路由)的通信性能的工作很少。更具体地说,传统的路由解决方案可以分为两类,如图 3 所示:(i) 基于拓扑的路由协议,和 (ii) 基于位置的路由协议。
基于拓扑的路由协议。这些方案使用网络内的链路信息将数据包从源发送到目的地。特别是,主动路由协议持续维护所有有效目的地的最新路由,从而保证低延迟数据包转发,但存在可扩展性问题。相反,反应式路由协议仅在需要实际交换消息时才建立数据包传递所遵循的路径,从而节省了宝贵的带宽资源,但增加了寻找可靠路由的延迟。
基于位置的路由协议。这些方案不需要路由表,仅使用相邻节点的位置信息来确定到目的地的下一跳转发。由于这些协议仅基于本地知识,因此它们被认为更具可扩展性和对拓扑变化的鲁棒性。然而,它们完全依赖于可能不准确或不可用的位置信息(例如,在隧道中或没有卫星信号的地方)[23],并且可能会遭受大量开销或由底层 MAC 协议的冲突和争用引起的额外延迟。
在此背景下,毫米波链路的传播特性和方向性为路由协议设计带来了挑战和机遇。例如,由于通信阻塞的存在,连接两个网络节点的最短路径(就地理或拓扑距离而言)不一定是最好的,并且实际上可能比更长的路径产生更低的吞吐量和更高的数据包丢失。因此,明智地选择中继节点非常重要,例如,在使用多跳通信来克服受损的直接路径时,尽量将跳数保持在最低限度。
最近,一些工作试图设计专门为具有定向天线的多跳系统量身定制的网络层协议。在 [4] 中,作者提出了一个欧p吨一世−考虑到毫米波传播的具体特征,选择合适的多跳中继的地理路由协议 (OGRP)。除了使用设备到设备 (D2D) 传输之外,其他解决方案还实现了某种多路径路由,允许车辆节点通过不同的接入技术建立多个连接。
在[25]中,提出了一种多跳并发传输方案,通过将一个单跳低速率链路适当地分解成多个较短的高速链路并允许非干扰节点并发传输,可以有效地利用网络资源用于提高网络吞吐量。

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。