统计代写|假设检验代写hypothesis testing代考|MATH214

统计代写|假设检验代写hypothesis testing代考|R Functions winmean, winvar, trimse, and winse

Included in the $\mathrm{R}$ functions written for this book is a function called winmean that computes the Winsorized mean. If the data are stored in the $\mathrm{R}$ variable $x$, it has the form
$$\text { winmean }(x, \operatorname{tr}=0.2) \text {. }$$
The optional argument tr is the amount of Winsorizing, which defaults to $0.2$ if unspecified. (The R function win also computes the Winsorized mean.) For example, the command winmean(dat) computes the $20 \%$ Winsorized mean for the data in the $\mathrm{R}$ vector dat. The command winmean $(x, 0.1)$ computes the $10 \%$ Winsorized mean. If there are any missing values (stored as NA in R), the function automatically removes them.
The function winvar computes the Winsorized sample variance, $s_w^2$. It has the form
$$\operatorname{winvar}(\mathrm{x}, \mathrm{tr}=0.2) \text {. }$$
Again, tr is the amount of Winsorization which defaults to $0.2$ if unspecified. The function
$$\text { trimse }(\mathrm{x}, \mathrm{tr}=0.2)$$
estimates the standard error of the trimmed mean and
$$\text { winse }(\mathrm{x}, \mathrm{tr}=.2)$$
estimates the standard error of the Winsorized mean. For example, the $\mathrm{R}$ command trimse $(x, 0.1)$ estimates the standard error of the $10 \%$ trimmed mean for the data stored in the vector $x$, and winvar $(\mathrm{x}, 0.1)$ computes the Winsorized sample variance using $10 \%$
Winsorization. The $\mathrm{R}$ command winvar(x) computes $s_w^2$ using $20 \%$ Winsorization.

统计代写|假设检验代写hypothesis testing代考|Estimating the Standard Error of the Sample Median, M

Trimmed means contain the usual sample median, $M$, as a special case where the maximum amount of trimming is used. When using $M$ and the goal is to estimate its standard error, alternatives to Eq. (3.9) should be used. Many methods have been proposed, comparisons of which were made by Price and Bonett (2001). In terms of hypothesis testing, an effective and fairly simple estimate appears to be one derived by McKean and Schrader (1984). To apply it, compute
$$k=\frac{n+1}{2}-z_{0.995} \sqrt{\frac{n}{4}},$$
where $k$ is rounded to the nearest integer and $z_{0.995}$ is the $0.995$ quantile of a standard normal distribution. Put the observed values in ascending order yielding $X_{(1)} \leq \cdots \leq X_{(n)}$. Then the McKean-Schrader estimate of the squared standard error of $M$ is
$$\left(\frac{X_{(n-k+1)}-X_{(k)}}{2 z_{0.995}}\right)^2 .$$
(Price \& Bonett, 2001 recommend a slightly more complicated estimator, but when computing a confidence interval for the median, currently it seems that their method offers little or no advantage.)

假设检验代考

统计代写|假设检验代写hypothesis testing代考|R Functions winmean, winvar, trimse, and winse

$$\纹理 { winmean }(x, \operatorname{tr}=0.2) 纹理 {. }$$

$$\left(\frac{X_{(n-k+1)}-X_{(k)}}{2 z_{0.995}}\right)^2 。$$
(Price\& Bonett, 2001推荐了一个稍微复杂的估计方法，但是当计算中位数的置信区间时，目前看来他们的方法几乎没有任何优势。)

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址，相关账户，以及课程名称，Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明，让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb，费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵)，报价后价格觉得合适，可以先付一周的款，我们帮你试做，满意后再继续，遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款，全款，周付款，周付款一方面方便大家查阅自己的分数，一方面也方便大家资金周转，注意:每周固定周一时先预付下周的定金，不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

myassignments-help擅长领域包含但不是全部: