相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
计算机代写|图像处理代写Image Processing代考|Classify Noise Filtering Results in Seismic Images
Seismic imaging is the main technology used for subsurface hydrocarbon prospection. The raw seismic data is heavily contaminated with noise and unwanted reflections that need to be removed before further processing. Therefore, the noise attenuation is done at an early stage and often while acquiring the data. Remote sensing images are often affected by noise in the process of digitization and transmission processes. De-noising is an indispensable way of improving image quality (Wu et al. 2020).
To give confidence in the de-noising process, quality control $(\mathrm{QC})$ is required. It can ensure that a costly data re-acquisition is not needed. A supervised learning approach to build an automatic QC system is proposed (Mejri and Bekara 2020). The QC system is an attribute-based classifier that is trained to classify three types of filtering (optimal = good filtering; harsh = over filtering, the signal is distorted; mild = under filtering, noise remains in the data). The attributes are computed from the data and represented geo-physically for the statistical measures of the quality of the filtering.
Experimental results show that some attributes show a good level of visual separation between the different types of filtering, particularly the harsh one. The clusters of attributes for the mild and the optimal filtering are close as they reflect the observation made earlier about the subtle differences between the two types of filtering.
In this system, multi-layer perceptron (MLP) is used for classification. Based on the fundamental assumption that without regularization, an optimal MLP structure tends to over fit as its depth is increased, a secure MLP-building strategy is adopted to build the multilayer perceptron model with the least validation cross-entropy error.
Figure $2.27$ depicts the flowchart of the one-vs-all binary classification process. The training and the validation sets were split into $K$ subsets of equal size using the bootstrap aggregation strategy. The training and validation subsets were converted to $N=3$ binary sets. Then, the binary MLP generator is used to predict binary decision subspaces. The predicted class members are then fed forward to a voting system, which decides on the class based on the majority vote, resulting in more accurate classification results.
计算机代写|图像处理代写Image Processing代考|Blurring Degradation
The blur caused by different reasons will have different effects on the image quality (different changes in the image), and the blur kernels corresponding to different types of blur can also be very different.
The necessary condition for motion blur is that there is relative motion between the camera and the object during the imaging process. This motion can originate from camera motion (global motion), object motion (local motion), or both. In practice, if the imaging time is long and/or the motion is relatively violent, resulting in the length of the trajectory of the motion reaching the pixel level during the imaging process, visible motion blur will be formed on the captured image. Motion blur is embodied in the image that the scenery stretches along the direction of motion and produces double shadows, so it is also called motion smear. The image acquisition system (with a narrow field of view) that uses a telescope lens is very sensitive to this type of image degradation.
The out-of-focus blur is related to the depth of field of the camera lens. The depth of field of the lens corresponds to the distance between the closest object and the farthest object that can be clearly imaged in the scene. When the camera lens is focused at a certain distance, the scene at that distance is the clearest, and the scene deviating from this distance will gradually blur with the degree of deviation. In general, within a certain range (depth of field) before and after this distance, the blur does not reach the pixel level, and the resulting blur cannot be noticed; the scene beyond this range will show the blur effect on the collected image. This blur is generally isotropic, which limits the resolution sharpness of image. Therefore, if it does not focus on the object one wants to observe (missing focus), the object in the image may not be clear enough.
Figure 3.3a shows an original clear image and its two corresponding images with motion blur (Figure 3.3b) and out-of-focus blur (Figure 3.3c). The upper left corner of Figure 3.3b and c shows the blur kernel (image) that produces the corresponding blur. It can be seen that the blur kernel of motion blur is a straight line reflecting the motion trajectory (it will be a curve for complex motion), and the blur kernel of out-of-focus blur is a disc. Motion blur is directional, while out-of-focus blur is more consistent in all directions. The difference in the blur kernel here corresponds to the blurring of the scene in Figure 3.3b and $c$.
In addition, atmospheric turbulence blur contains some of the characteristics of the above two kinds of blur in a certain sense. Atmospheric turbulence is an important form of motion in the atmosphere.

图像处理代考
计算机代写|图像处理代写Image Processing代考|Classify Noise Filtering Results in Seismic Images
地震成像是用于地下油气勘探的主要技术。原始地震数据被噪声和不需要的反射严重污染,需要在进一步处理之前将其去除。因此,噪声衰减是在早期阶段完成的,而且通常是在采集数据时完成的。遥感影像在数字化和传输过程中经常受到噪声的影响。去噪是提高图像质量不可或缺的方法 (Wu et al. 2020)。
为降噪过程、质量控制提供信心(问C)是必须的。它可以确保不需要代价高昂的数据重新获取。提出了一种构建自动 QC 系统的监督学习方法(Mejri 和 Bekara 2020)。QC 系统是一个基于属性的分类器,经过训练可以对三种类型的过滤进行分类(最佳 = 过滤良好;苛刻 = 过度过滤,信号失真;温和 = 过滤不足,噪声保留在数据中)。这些属性是从数据中计算出来的,并在地理物理上表示为过滤质量的统计度量。
实验结果表明,某些属性在不同类型的过滤之间表现出良好的视觉分离水平,尤其是苛刻的过滤。温和过滤和最佳过滤的属性集群很接近,因为它们反映了之前对两种类型过滤之间的细微差别所做的观察。
在该系统中,多层感知器(MLP)用于分类。基于在没有正则化的情况下,最佳 MLP 结构随着深度的增加而趋于过度拟合的基本假设,采用安全的 MLP 构建策略来构建具有最小验证交叉熵误差的多层感知器模型。
数字2.27描述了一对一二元分类过程的流程图。训练集和验证集被分成钾使用 bootstrap 聚合策略创建相同大小的子集。训练和验证子集被转换为否=3二进制集。然后,二元 MLP 生成器用于预测二元决策子空间。然后将预测的班级成员反馈给投票系统,该系统根据多数票决定班级,从而产生更准确的分类结果。
计算机代写|图像处理代写Image Processing代考|Blurring Degradation
不同原因造成的模糊会对图像质量产生不同的影响(图像的不同变化),不同类型的模糊对应的模糊核也可以有很大的不同。
运动模糊的必要条件是在成像过程中相机与物体之间存在相对运动。此运动可能源自相机运动(全局运动)、对象运动(局部运动)或两者。在实际应用中,如果成像时间较长和/或运动比较剧烈,导致成像过程中运动轨迹的长度达到像素级,就会在拍摄图像上形成可见的运动模糊。运动模糊体现在图像中景物沿运动方向拉伸,产生重影,故又称运动拖影。使用望远镜镜头的图像采集系统(具有窄视场)对这种类型的图像退化非常敏感。
离焦模糊与相机镜头的景深有关。镜头的景深对应于场景中能清晰成像的最近物体和最远物体之间的距离。当镜头对焦到一定距离时,该距离的景物最为清晰,偏离该距离的景物会随着偏离的程度逐渐模糊。一般来说,在这个距离前后的一定范围(景深)内,模糊不会达到像素级别,产生的模糊是察觉不到的;超出此范围的场景将在采集的图像上显示模糊效果。这种模糊通常是各向同性的,这限制了图像的分辨率清晰度。因此,如果它没有聚焦在想要观察的物体上(失焦),
图 3.3a 显示了原始清晰图像及其两个对应的具有运动模糊(图 3.3b)和离焦模糊(图 3.3c)的图像。图 3.3b 和 c 的左上角显示了产生相应模糊的模糊内核(图像)。可以看出,运动模糊的模糊核是反映运动轨迹的直线(复杂的运动会是曲线),离焦模糊的模糊核是圆盘。运动模糊是有方向性的,而离焦模糊在所有方向上都更加一致。这里模糊核的不同对应于图3.3b中场景的模糊和C.
另外,大气湍流模糊在一定意义上包含了上述两种模糊的一些特征。大气湍流是大气运动的一种重要形式。

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。