数学代写|数值方法作业代写numerical methods代考|CS3513

相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


数学代写|数值方法作业代写numerical methods代考|Stability Analysis

The idea of the stability analysis came from Weidman et al. [44]. In their study, they noticed that there exists more than one solution called dual solutions. It is important to note that this analysis is introduced to determine which solution provides a good physical meaning to the flow (stable solution). Since we obtained the dual solutions, thus we are encouraged to determine which solutions are stable. To carry out this analysis, Equations (2)-(4) must be in unsteady case. Hence, the new dimensionless time variable is taken as $\tau=2 U t / x$. Thus, we have
$$
\begin{gathered}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial r}=\frac{v}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right), \
\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial r}=\frac{\alpha}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\kappa\left[D_B \frac{\partial T}{\partial r} \frac{\partial C}{\partial r}+\frac{D_T}{T_{\infty}}\left(\frac{\partial T}{\partial r}\right)^2\right]+\frac{Q^}{\rho C_p}\left(T-T_{\infty}\right), \ \frac{\partial C}{\partial t}+u \frac{\partial C}{\partial x}+v \frac{\partial C}{\partial r}=\frac{D_B}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C}{\partial r}\right)+\frac{D_T}{T_{\infty}} \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)-K^\left(C-C_{\infty}\right),
\end{gathered}
$$
and the new similarity transformations take the following form
$$
\psi=v x f(\eta, \tau), \quad \eta=\frac{U r^2}{v x}, \quad \theta(\eta, \tau)=\frac{T-T_{\infty}}{T_w-T_{\infty}}, \quad \phi(\eta, \tau)=\frac{C-C_{\infty}}{C_w-C_{\infty}}, \quad \tau=\frac{2 U t}{x} .
$$
Please note that the use of $\tau$ is related to an initial value problem that is consistent with the solution that will be attained in practice (physically realizable). Afterwards, encorporating Equation (19) into Equations (16)-(18), we obtains
$$
\begin{gathered}
2 \frac{\partial}{\partial \eta}\left(\eta \frac{\partial^2 f}{\partial \eta^2}\right)+f \frac{\partial^2 f}{\partial \eta^2}-\frac{\partial^2 f}{\partial \eta \partial \tau}+\tau \frac{\partial f}{\partial \eta} \frac{\partial^2 f}{\partial \eta \partial \tau}-\tau \frac{\partial^2 f}{\partial \eta^2} \frac{\partial f}{\partial \tau}=0, \
\frac{2}{P r} \frac{\partial}{\partial \eta}\left(\eta \frac{\partial \theta}{\partial \eta}\right)+f \frac{\partial \theta}{\partial \eta}+2 \eta\left[N t\left(\frac{\partial \theta}{\partial \eta}\right)^2+N b \frac{\partial \theta}{\partial \eta} \frac{\partial \phi}{\partial \eta}\right]+\frac{1}{2} Q \theta-\frac{\partial \theta}{\partial \tau}+\tau \frac{\partial f}{\partial \eta} \frac{\partial \theta}{\partial \tau}-\tau \frac{\partial \theta}{\partial \eta} \frac{\partial f}{\partial \tau}=0, \
2 \frac{\partial}{\partial \eta}\left(\eta \frac{\partial \phi}{\partial \eta}\right)+2 \frac{N t}{N b} \frac{\partial}{\partial \eta}\left(\eta \frac{\partial \theta}{\partial \eta}\right)+L e\left(f \frac{\partial \phi}{\partial \eta}-\frac{\partial \phi}{\partial \tau}\right)-\frac{1}{2} L e K \phi+L e \tau \frac{\partial f}{\partial \eta} \frac{\partial \phi}{\partial \tau}-L e \tau \frac{\partial \phi}{\partial \eta} \frac{\partial f}{\partial \tau}=0,
\end{gathered}
$$
together with the boundary conditions
$$
\begin{gathered}
f(c, \tau)=\frac{\varepsilon}{2} c+\tau \frac{\partial f}{\partial \tau}(c, \tau), \frac{\partial f}{\partial \eta}(c, \tau)=\frac{\varepsilon}{2}, \theta(c, \tau)=1, \quad \phi(c, \tau)=1, \
\frac{\partial f}{\partial \eta}(\eta, \tau) \rightarrow \frac{1}{2}(1-\varepsilon), \theta(\eta, \tau) \rightarrow 0, \phi(\eta, \tau) \rightarrow 0 \text { as } \eta \rightarrow \infty .
\end{gathered}
$$

数学代写|数值方法作业代写numerical methods代考|Graphical Results and Discussion

In this section, the graphical outputs of our problem are interpreted for various effects of the involved parameters. All the computations have been carried out for a wide range of values of the governing parameters; $c(0.1 \leq c \leq 0.2), \varepsilon(-4.3 \leq \varepsilon \leq 0.8), K(-0.1 \leq K \leq 0.2), Q(0 \leq Q \leq 0.4)$, $N b(0.1 \leq N b \leq 0.5), N t(0.1 \leq N t \leq 0.5)$ and for a fixed values of $P r=2$ and $L e=1$. Equations (8)-(10) along with the conditions (11) are computed numerically via bvp4c function that implemented in MATLAB software. Besides the shooting method, there is a new effective method for solving the boundary value problem for ordinary differential equations that is bvp4c package. Mathematically, this package uses the finite difference methods, in which the output is attained using an initial guess provided at the starting mesh point and resize the step to obtain the particular certainty. Nevertheless, to use this package, the boundary value problem must reduce to first order system of ordinary differential equations. To validate the accuracy of the present results, we have initially compared our results to those of Ahmad et al. [42] and Salleh et al. [43]. In this respect, Table 1 shows a comparison value of shear stress $f^{\prime \prime}(c)$ for $\varepsilon=L e=Q=K=0$ for some of the thickness of the needle $c$ when $\operatorname{Pr}=1$. An excellent agreement is observed in these studies.

The effect of needle thickness $c$ on the velocity, temperature and concentration profiles are graphically presented in Figure $2 a-c$. It is noticed from the plots that the velocity, temperature and concentration profiles for upper branch solution increase with the increasing value of needle thickness. Similar observation is found for momentum, thermal and concentration boundary layer thicknesses for the upper branch as the $c$ increase. Mathematically, the shape of graphs obtained in these profiles has asymptote hehaviors and it fulfills the requirement of houmdary eondition (11). One ean see that an increment in the needle thickness decreases the numerical values of surface shear stress $f^{\prime \prime}(c)$, heat flux $-\theta^{\prime}(c)$ and also mass flux $-\phi^{\prime}(c)$. These phenomena are clearly shown in Figure $3 a-c$. This situation occurs due to an increase in the momentum, thermal and concentration boundary layer thicknesses on the surface, and consequently decline the shear stress and slow down the heat and mass transfers from the surface to the flow. Physically, the slender surface of the needle makes heat and mass to diffuse through it quickly compared to thick surface. In addition, the critical values of $\varepsilon$, by which the upper and lower branch solutions connected, are noticed to decrease as the needle thickness reduces. In other words, we can say that the needle thickness has a significant effect on the existence of the dual solutions.

数学代写|数值方法作业代写numerical methods代考|CS3513

数值方法代考

数学代写|数值方法作业代写numerical methods代考|Stability Analysis

稳定性分析的想法来自 Weidman 等人。[44]。在他们的研究中,他们注意到存在不止一种解决方案,称
(稳定的解决方案) 。由于我们获得了对偶解,因此我们鼓励确定哪些解是稳定的。为了进行这种分 析,等式 (2) – (4) 必须在不稳定的情况下。因此,新的无量纲时间变量取为 $\tau=2 U t / x$. 因此,我们 有
新的相似变换采用以下形式
$$
\psi=v x f(\eta, \tau), \quad \eta=\frac{U r^2}{v x}, \quad \theta(\eta, \tau)=\frac{T-T_{\infty}}{T_w-T_{\infty}}, \quad \phi(\eta, \tau)=\frac{C-C_{\infty}}{C_w-C_{\infty}}, \quad \tau=\frac{2 U t}{x} .
$$
请注意,使用 $\tau$ 与一个初始值问题相关,该初始值问题与将在实践中获得的解决方案(物理上可实现) 致。然后,将方程 (19) 代入方程 (16) – (18),我们得到
$$
2 \frac{\partial}{\partial \eta}\left(\eta \frac{\partial^2 f}{\partial \eta^2}\right)+f \frac{\partial^2 f}{\partial \eta^2}-\frac{\partial^2 f}{\partial \eta \partial \tau}+\tau \frac{\partial f}{\partial \eta} \frac{\partial^2 f}{\partial \eta \partial \tau}-\tau \frac{\partial^2 f}{\partial \eta^2} \frac{\partial f}{\partial \tau}=0, \frac{2}{\operatorname{Pr}} \frac{\partial}{\partial \eta}\left(\eta \frac{\partial \theta}{\partial \eta}\right)+f \frac{\partial \theta}{\partial \eta}+2 \eta\left[N t\left(\frac{\partial \theta}{\partial \eta}\right)\right.
$$
连同边界条件
$$
f(c, \tau)=\frac{\varepsilon}{2} c+\tau \frac{\partial f}{\partial \tau}(c, \tau), \frac{\partial f}{\partial \eta}(c, \tau)=\frac{\varepsilon}{2}, \theta(c, \tau)=1, \quad \phi(c, \tau)=1, \frac{\partial f}{\partial \eta}(\eta, \tau) \rightarrow \frac{1}{2}(1-\varepsilon), \theta(\eta, \tau) \rightarrow 0
$$

数学代写|数值方法作业代写numerical methods代考|Graphical Results and Discussion

在本节中,我们的问题的图形输出被解释为所涉及参数的各种影响。所有的计算都是针对广泛的控制参 数值进行的; $c(0.1 \leq c \leq 0.2), \varepsilon(-4.3 \leq \varepsilon \leq 0.8), K(-0.1 \leq K \leq 0.2), Q(0 \leq Q \leq 0.4)$ , $N b(0.1 \leq N b \leq 0.5), N t(0.1 \leq N t \leq 0.5)$ 对于固定值 $P r=2$ 和 $L e=1$. 方程 (8)-(10) 以及条件 (11) 通过在 MATLAB 软件中实现的 bvp4c 函数进行数值计算。除了射击法之外,还有一种新的有效求解常微 分方程边值问题的方法,就是bvp4c包。在数学上,此包使用有限差分方法,其中使用在起始网格点提供 的初始猜测来获得输出,并调整步长以获得特定的确定性。然而,要使用这个包,边值问题必须减少到 常微分方程的一阶系统。为了验证目前结果的准确性,我们最初将我们的结果与 Ahmad 等人的结果进 行了比较。[42] 和 Salleh 等人。[43]。在这方面,表1显示了盼切应力的比较值 $f^{\prime \prime}(c)$ 为了 $\varepsilon=L e=Q=K=0$ 对于一些粗细的针 $c$ 什么时候 $\operatorname{Pr}=1$. 在这些研究中观察到了极好的一致性。
针粗细的影响 $c$ 对速度、温度和浓度曲线的影响如图所示 $2 a-c$. 从图中可以看出,上支溶液的速度、温 度和浓度分布随責针厚度值的增加而增加。对于上分支的动量、热力和浓度边界层厚度也发现了类似的 观察结果,因为 $c$ 增加。在数学上,在这些轮廓中获得的图形形状具有渐近线特征,并且满足人类条件
(11) 的要求。可以看出,针厚度的增加会降低表面剪切应力的数值 $f^{\prime \prime}(c)$, 热通量 $-\theta^{\prime}(c)$ 还有质量通量 $-\phi^{\prime}(c)$. 这些现象如图所示 $3 a-c$. 这种情况的发生是由于表面上的动量、热和浓度边界层厚度的增加, 从而降低了勖切应力并减慢了从表面到流动的热量和质量传递。在物理上,与厚表面相比,针的细长表 面使热量和质量通过它快速扩散。此外,临界值 $\varepsilon$ ,通过连接上下分支解决方案,注意到随着针厚度的减 小而减小。换句话说,我们可以说针的粗细对对偶解的存在有显着的影响。

数学代写|数值方法作业代写numerical methods代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Scroll to Top