统计代写|应用线性模型代写Applied Linear Models代考|STAT6620

相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


统计代写|应用线性模型代写Applied Linear Models代考|Example (continued)

Confidence intervals on $b_1$ will be calculated for the example used earlier, a non-symmetric interval from (89) and a symmetric interval from (91). For both we use
$$
\hat{b}1=50 / 24=2.08 $$ from (28), $$ \hat{\sigma}=\sqrt{5.75}=2.40 \quad \text { and } \quad N-r=2 $$ from Table $3.5$, and $$ a^{11}=20 / 144=0.139 $$ from (86) and (44). Then in (89) a non-symmetric confidence interval for $b_1$ is $$ \begin{aligned} 2.08-2.40 t{2, \alpha, U} \sqrt{0.139} \text { to } & 2.08+2.40 t_{2, \alpha, L} \sqrt{0.139} \
&=2.08-0.89 t_{2, \alpha, U} \text { to } 2.08+0.89 t_{2, \alpha, L} \quad \text { (97) }
\end{aligned}
$$
From tabulated values of the $t_2$-distribution, [e.g., Vogler and Norton (1957)] we find that
$$
\operatorname{Pr}(t \leq-3.6)=0.04 \quad \text { and } \quad \operatorname{Pr}(t \geq 7.1)=0.01 \text {, }
$$
so that by (88), for $\alpha=0.05$,
$$
t_{2,05, L}=-3.6 \quad \text { and } \quad t_{2,05, U}=7.1
$$
and so in (97) the confidence interval becomes
$$
2.08-0.89(7.1) \text { to } 2.08-0.89(-3.6)=(-4.23,5.08) \text {. }
$$
It is questionable, of course, as to what kind of situation would reasonably lead to needing a non-symmetric confidence interval with the $t$-distribution. The example illustrates, however, how such intervals can be calculated and doing so emphasizes the important fact that there are many such intervalsbecause there are many values $t_{N-r, \alpha, L}$ and $t_{N-r, \alpha, U}$ that satisfy (88). In contrast, there is only one symmetric confidence interval, the interval which has the optimal property that for given $N-r$ and $\alpha$ it is the interval of shortest length. This is the interval given in (91) for which, for the example, $(90)$ is
$$
\operatorname{Pr}{t \geq 4.30}=0.025
$$
for $t \sim t_2$. Hence the symmetric interval on $b_1$ is, from (91),
$$
\begin{aligned}
2.08 \pm 2.40 t_{2, \frac{1}{2} \alpha} \sqrt{0.139} &=2.08 \pm 0.89 t_{2,0.025} \
&=2.08 \pm 0.89(4.30) \
&=(-1.75,5.91)
\end{aligned}
$$

统计代写|应用线性模型代写Applied Linear Models代考|Testing linear hypotheses

The literature of linear models abounds with discussions of different kinds of hypotheses that can be of interest in widely differing fields of application. Four hypotheses of particular interest are: (i) $H: \quad \mathbf{b}=\mathbf{0}$, the hypothesis that all elements of $\mathbf{b}$ are zero. (ii) $H: \quad \mathbf{b}=\mathbf{b}0$, the hypothesis that $b_i=b{i 0}$ for $i=0,1,2, \ldots, k$, i.e., that each $b_i$ is equal to some specified value $b_{i 0}$. (iii) $H: \quad \boldsymbol{\lambda}^{\prime} \mathbf{b}=m$, that some linear combination of the elements of $\mathbf{b}$ equals a specified constant. (iv) $H: \quad \mathbf{b}_q=\mathbf{0}$, that some of the $b_i$ ‘s, $q$ of them where $q<k$, are zero. Although the calculations for the $F$-statistic for these hypotheses and variants of them appear, on the surface, to differ markedly from one kind of hypothesis to another, we will show that all linear hypotheses can be handled by one universal procedure. Specific hypotheses such as those listed above are then just special cases of the general procedure.
The general hypothesis we consider is
$$
H: \quad \mathbf{K}^{\prime} \mathbf{b}=\mathbf{m}
$$
where $\mathbf{b}$, of course, is the $(k+1)$-order vector of parameters of the model; $\mathbf{K}^{\prime}$ is any matrix of $s$ rows and $k+1$ columns; and $\mathbf{m}$ is a vector, of order $s$, of specified constants. There is only one limitation on $\mathbf{K}^{\prime}$ : that it have full row rank, i.e., $r\left(\mathbf{K}^{\prime}\right)=s$. This simply means that the linear functions of $\mathbf{b}$ which form the hypothesis must be linearly independent; that is, the hypothesis must be made up of linearly independent functions of $\mathbf{b}$ and must contain no functions which are linear combinations of others therein. This is quite reasonable because it means, for example, that if the hypothesis relates to $b_1-b_2$ and $b_2-b_3$ then there is no point in having it also relate, explicitly, to $b_1-b_3$. Clearly, this condition on $\mathbf{K}^{\prime}$ is not at all restrictive in limiting the application of the hypothesis $H: \quad \mathbf{K}^{\prime} \mathbf{b}=\mathbf{m}$ to real problems. Furthermore, although it might seem necessary to also require that $\mathbf{m}$ be such that the equations $\mathbf{K}^{\prime} \mathbf{b}=\mathbf{m}$ be consistent, this is automatically achieved by demanding that $\mathbf{K}^{\prime}$ have full row rank, for the equations $\mathbf{K}^{\prime} \mathbf{b}=\mathbf{m}$ are then consistent for any vector $\mathbf{m}$.

统计代写|应用线性模型代写Applied Linear Models代考|STAT6620

统计代写|应用线性模型代写Applied Linear Models代考|Example (continued)

置信区间 $b_1$ 将为前面使用的示例计算非对称区间 (89) 和对称区间 (91)。我们都使用
$$
\hat{b} 1=50 / 24=2.08
$$
从 (28),
$$
\hat{\sigma}=\sqrt{5.75}=2.40 \quad \text { and } \quad N-r=2
$$
从表3.5,和
$$
a^{11}=20 / 144=0.139
$$
来自 (86) 和 (44)。然后在 (89) 中的非对称置信区间 $b_1$ 是
$$
2.08-2.40 t 2, \alpha, U \sqrt{0.139} \text { to } 2.08+2.40 t_{2, \alpha, L} \sqrt{0.139}=2.08-0.89 t_{2, \alpha, U} \text { to } 2.08+0.89 t_{2, \alpha, L}
$$
从表中的值 $t_2$-分布,[ 例如,Vogler 和 Norton (1957)] 我们发现
$$
\operatorname{Pr}(t \leq-3.6)=0.04 \text { and } \operatorname{Pr}(t \geq 7.1)=0.01 \text {, }
$$
因此,通过 (88),对于 $\alpha=0.05$ ,
$$
t_{2,05, L}=-3.6 \quad \text { and } \quad t_{2,05, U}=7.1
$$
所以在 (97) 中,置信区间变为
$$
2.08-0.89(7.1) \text { to } 2.08-0.89(-3.6)=(-4.23,5.08) .
$$
当然,什么样的情况会合理地导致需要一个非对称置信区间是值得怀疑的。 $t$-分配。但是,该示例说明了 如何计算此类间隔,并且这样做强调了一个重要事实,即存在许多此类间隔,因为存在许多值 $t_{N-r, \alpha, L}$ 和 $t_{N-r, \alpha, U}$ 满足 (88)。相反,只有一个对称置信区间,即对于给定的具有最优性质的区间 $N-r$ 和 $\alpha$ 它是 最短长度的区间。这是 (91) 中给出的区间,例如,(90)是
$$
\operatorname{Pr} t \geq 4.30=0.025
$$
为了 $t \sim t_2$. 因此对称区间 $b_1$ 是,从 (91),
$$
2.08 \pm 2.40 t_{2, \frac{1}{2} \alpha} \sqrt{0.139}=2.08 \pm 0.89 t_{2,0.025} \quad=2.08 \pm 0.89(4.30)=(-1.75,5.91)
$$

统计代写|应用线性模型代写Applied Linear Models代考|Testing linear hypotheses

线性模型的文献中充斥着对不同类型假设的讨论,这些假设可能对广泛不同的应用领域感兴趣。四个特别 感兴趣的假设是: (i) $H: \mathbf{b}=\mathbf{0}$ ,假设所有元㭌b为零。(二) $H: \mathbf{b}=\mathbf{b} 0$, 假设 $b_i=b i 0$ 为了 $i=0,1,2, \ldots, k$ ,即,每个 $b_i$ 等于某个指定值 $b_{i 0} .(三) H: \quad \boldsymbol{\lambda}^{\prime} \mathbf{b}=m$ ,元素的一些线性组合 $\mathbf{b}$ 等于指定的 表面上看在一种假设与另一种假设之间存在显着差异,我们将证明所有线性假设都可以通过一个通用程序 来处理。诸如上面列出的那些特定假设只是一般程序的特殊情况。 我们考虑的一般假设是
$$
H: \quad \mathbf{K}^{\prime} \mathbf{b}=\mathbf{m}
$$
在哪里 $\mathbf{b}$ ,当然是 $(k+1)$-模型参数的阶向量; $\mathbf{K}^{\prime}$ 是任何矩阵 $s$ 行和 $k+1$ 列; 和 $\mathbf{m}$ 是一个向量,有序 $s$ ,指 定的常数。只有一个限制 $\mathbf{K}^{\prime}$ : 它具有完整的行等级,即 $r\left(\mathbf{K}^{\prime}\right)=s$. 这仅仅意味着线性函数 $\mathbf{b}$ 构成假设必 须是线性独立的;也就是说,假设必须由线性独立的函数组成 $\mathbf{b}$ 并且不得包含其他函数的线性组合。这是 非常合理的,因为这意味着,例如,如果假设与 $b_1-b_2$ 和 $b_2-b_3$ 那么让它也明确地与 $b_1-b_3$. 显然,这 程 $K^{\prime} b=m$ 保持一致,这是通过要求自动实现的 $K^{\prime}$ 具有完整的行秩,对于方程 $K^{\prime} b=m$ 然后对于任何 向量都是一致的 $\mathbf{m}$.

统计代写|应用线性模型代写Applied Linear Models代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Scroll to Top