相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
统计代写|随机过程代写stochastic process代考|Branching processes
In inference for branching processes, the parameters of interest will usually be the mean of the offspring distribution, which determines whether or not extinction is certain, and the probability of eventual extinction.
Typically, the number of offspring born to each individual will not be observed. Instead, we will simply observe the size of the population at each generation. Suppose that given a fixed, initial population $z_0$, we observe the population sizes of $n$ generations of a branching process, say $Z_1=z_1, \ldots, Z_n=z_n$. Then, for certain parametric distributions of the number of offspring, Bayesian inference is straightforward.
Example 3.14: Assume that the number of offspring born to an individual has a geometric distribution
$$
P(X=x \mid p)=p(1-p)^x, \quad \text { for } x=0,1,2, \ldots
$$ with $E[X \mid p]=\frac{1-p}{p}$. Now, for $p \geq 0.5, E[X \mid p]<1$ and extinction is certain. Otherwise, from (3.2), the probability of extinction can be shown to be $$ \pi=\frac{p}{1-p} . $$ Given a beta prior distribution $p \sim \operatorname{Be}(\alpha, \beta)$ and the sample data, and recalling that the sum of geometric distributed random variables has a negative binomial distribution, it is easy to see that $$ p \mid \mathbf{z} \sim \operatorname{Be}\left(\alpha+z-z_n, \beta+z-z_0\right), $$ where $z=\sum_{i=0}^n z_i$. Therefore, the predictive mean of the offspring distribution is $$ E[X \mid \mathbf{z}]-E\left[\frac{1-p}{p} \mid \mathbf{z}\right]-\frac{\beta+z-z_0}{\alpha+z-z_n-1} . $$ The predictive probability that the population dies out in the next generation is $$ P\left(Z_{n+1}=0 \mid \mathbf{z}\right)=E\left[p^{z_n} \mid \mathbf{z}\right]=\frac{B\left(\alpha+z, \beta+z-z_0\right)}{B\left(\alpha+z-z_n, \beta+z-z_0\right)} $$ and the predictive probability of eventual extinction is $$ \begin{aligned} E[\pi \mid \mathbf{z}]=& P(p>0.5 \mid \mathbf{z})+\int_0^{0.5}\left(\frac{p}{1-p}\right)^{z_n} f(p \mid \mathbf{z}) \mathrm{d} z \
=& I B\left(0.5, \beta+z-z_0, \alpha+z-z_n\right)+\
& \frac{B\left(\alpha+z, \beta+z-z_0-z_n\right)}{B(\alpha, \beta)} I B\left(0.5, \alpha+z, \beta+z-z_0-z_n\right),
\end{aligned}
$$
where $I B(x, a, b)=\int_0^x \frac{1}{R(a, b)} x^{a-1}(1-x)^{b-1} \mathrm{~d} x$ is the incomplete beta function. $\Delta$
Conjugate inference is also straightforward when, for example, binomial, negative binomial or Poisson distributions are assumed (see, e.g., Guttorp, 1991).
统计代写|随机过程代写stochastic process代考|Hidden Markov models
Consider the HMM outlined in Section 3.2.5. Given the sample data, $\mathbf{y}=\left(y_0, \ldots, y_n\right)$, the likelihood function is
$$
l(\boldsymbol{\theta}, \boldsymbol{P} \mid \mathbf{y})=\sum_{x_0, \ldots, x_n} \pi\left(x_0\right) f\left(y_0 \mid \boldsymbol{\theta}{x_0}\right) \prod{j=1}^n p_{x_{j-1} x_j} f\left(y_j \mid \boldsymbol{\theta}{x_j}\right), $$ which contains $K^{n+1}$ terms. In practice, this will usually be impossible to compute directly. A number of approaches can be taken in order to simplify the problem. Suppose that the states, $\mathbf{x}$, of the hidden Markov chain were known. Then, the likelihood simplifies to $$ \begin{aligned} l(\boldsymbol{\theta}, \boldsymbol{P} \mid \mathbf{x}, \mathbf{y}) &=\pi\left(x_0\right) \prod{j=1}^n p_{x_{j-1} x_j} \prod_{i=1}^n f\left(y_i \mid \boldsymbol{\theta}{x_i}\right) \ &=l_1(\boldsymbol{P} \mid \mathbf{x}) l_2(\boldsymbol{\theta} \mid \mathbf{x}, \mathbf{y}), \end{aligned} $$ where $l_1(\boldsymbol{P} \mid \mathbf{x})=\pi\left(x_0 \mid \boldsymbol{P}\right) \prod{j=1}^n p_{x_{j-1} x_j}$ and $l_2(\boldsymbol{\theta} \mid \mathbf{x}, \mathbf{y})=\prod_{i=0}^n f\left(y_i \mid \boldsymbol{\theta}_{x_i}\right)$. Given the usual matrix beta prior distribution for $\boldsymbol{P}$, then a simple rejection algorithm could be used to sample from $f(\boldsymbol{P} \mid \mathbf{x})$ as in Section 3.3.6. Similarly, when $Y \mid \boldsymbol{\theta}$ is a standard exponential family distribution, then a conjugate prior for $\theta$ will usually be available and, therefore, drawing a sample from each $\theta_i \mid \mathbf{x}, \mathbf{y}$ will also be straightforward.
Also, letting $\mathbf{x}{-t}=\left(x_0, x_1, \ldots, x{t-1}, x_{t+1}, \ldots, x_n\right)$, it is straightforward to see that, for $i=1, \ldots, K$,
$P\left(x_0=i \mid \mathbf{x}{-0}, \mathbf{y}\right) \propto \pi(i) p{i x_1} f\left(y_1 \mid \boldsymbol{\theta}i\right)$ $P\left(x_t=i \mid \mathbf{x}{-t}, \mathbf{y}\right) \propto p_{x_{t-1} i} p_{i x_{t+1}} f\left(y_t \mid \theta_i\right)$ for $1<t<n$
$P\left(x_n=i \mid \mathbf{x}{-n}, \mathbf{y}\right) \propto p{x_{n-1} i} f\left(y_n \mid \boldsymbol{\theta}_i\right)$
so that a full Gibbs sampling algorithm can be set up.
A disadvantage of this type of algorithm is that the generated sequences $\mathbf{x}^{(s)}$ can be highly autocorrelated, particularly when there is high dependence amongst the elements of $\mathbf{x}$ in their posterior distribution. In many cases, it is more efficient to sample directly from $P(\mathbf{x} \mid \mathbf{y})$. The standard approach for doing this is to use the forward-backward or Baum-Welch formulas (Baum et al., 1970).
First, note that $P\left(x_n \mid x_{n-1}, \mathbf{y}\right)=P\left(x_n \mid x_{n-1}, y_n\right) \propto p_{x_{n-1} x_n} f\left(y_n \mid x_n\right) \equiv P_n^{\prime}\left(x_n \mid x_{n-1}, \mathbf{y}\right)$ which is the unnormalized conditional density of $x_n \mid x_{n-1}, \mathbf{y}$. Also, it is easy to show that we have a backward recurrence relation
$$
P\left(x_t \mid x_{t-1}, \mathbf{y}\right) \propto p_{x_{t-1} x_t} f\left(y_t \mid x_t\right) \sum_{i=1}^K p_{t+1}^{\prime}\left(i \mid x_t, \mathbf{y}\right) \equiv P_t^{\prime}\left(x_t \mid x_{t-1}, \mathbf{y}\right)
$$
and, finally,
$$
P\left(x_0 \mid \mathbf{y}\right) \propto \pi\left(x_0\right) f\left(y_0 \mid x_0\right) \sum_{i=1}^K P_1^{\prime}\left(i \mid x_0, \mathbf{y}\right) \equiv P_0^{\prime}\left(x_0 \mid \mathbf{y}\right) .
$$

随机过程代考
统计代写|随机过程代写随机过程代考|分支过程
在分支过程的推理中,感兴趣的参数通常是后代分布的平均值,它决定了灭绝是否确定,以及最终灭绝的概率
通常情况下,每个个体所生的后代数量不会被观察到。相反,我们将简单地观察每一代的人口规模。假设给定一个固定的初始种群$z_0$,我们观察一个分支过程的$n$代的种群大小,比如$Z_1=z_1, \ldots, Z_n=z_n$。然后,对于后代数量的某些参数分布,贝叶斯推断是直接的。
例3.14:假设一个个体所生的后代数量具有几何分布
$$
P(X=x \mid p)=p(1-p)^x, \quad \text { for } x=0,1,2, \ldots
$$ with $E[X \mid p]=\frac{1-p}{p}$。现在,对于$p \geq 0.5, E[X \mid p]<1$和灭绝是肯定的。否则,由(3.2)可知,灭绝概率为$$ \pi=\frac{p}{1-p} . $$给定beta先验分布$p \sim \operatorname{Be}(\alpha, \beta)$和样本数据,回想几何分布随机变量的和具有负二项分布,很容易看出$$ p \mid \mathbf{z} \sim \operatorname{Be}\left(\alpha+z-z_n, \beta+z-z_0\right), $$其中$z=\sum_{i=0}^n z_i$。因此,后代分布的预测均值为$$ E[X \mid \mathbf{z}]-E\left[\frac{1-p}{p} \mid \mathbf{z}\right]-\frac{\beta+z-z_0}{\alpha+z-z_n-1} . $$。种群在下一代中灭绝的预测概率为$$ P\left(Z_{n+1}=0 \mid \mathbf{z}\right)=E\left[p^{z_n} \mid \mathbf{z}\right]=\frac{B\left(\alpha+z, \beta+z-z_0\right)}{B\left(\alpha+z-z_n, \beta+z-z_0\right)} $$,最终灭绝的预测概率为$$ \begin{aligned} E[\pi \mid \mathbf{z}]=& P(p>0.5 \mid \mathbf{z})+\int_0^{0.5}\left(\frac{p}{1-p}\right)^{z_n} f(p \mid \mathbf{z}) \mathrm{d} z \
=& I B\left(0.5, \beta+z-z_0, \alpha+z-z_n\right)+\
& \frac{B\left(\alpha+z, \beta+z-z_0-z_n\right)}{B(\alpha, \beta)} I B\left(0.5, \alpha+z, \beta+z-z_0-z_n\right),
\end{aligned}
$$
,其中$I B(x, a, b)=\int_0^x \frac{1}{R(a, b)} x^{a-1}(1-x)^{b-1} \mathrm{~d} x$为不完全贝塔函数。$\Delta$
当假设二项式、负二项式或泊松分布(见Guttorp, 1991)时,共轭推理也是直接的
统计代写|随机过程代写随机过程代考|隐马尔可夫模型
考虑第3.2.5节中概述的HMM。给定样本数据$\mathbf{y}=\left(y_0, \ldots, y_n\right)$,似然函数为
$$
l(\boldsymbol{\theta}, \boldsymbol{P} \mid \mathbf{y})=\sum_{x_0, \ldots, x_n} \pi\left(x_0\right) f\left(y_0 \mid \boldsymbol{\theta}{x_0}\right) \prod{j=1}^n p_{x_{j-1} x_j} f\left(y_j \mid \boldsymbol{\theta}{x_j}\right), $$,其中包含$K^{n+1}$项。在实践中,这通常是不可能直接计算的。为了简化这个问题,可以采取许多方法。假设隐藏马尔可夫链的状态$\mathbf{x}$是已知的。然后,可能性化简为$$ \begin{aligned} l(\boldsymbol{\theta}, \boldsymbol{P} \mid \mathbf{x}, \mathbf{y}) &=\pi\left(x_0\right) \prod{j=1}^n p_{x_{j-1} x_j} \prod_{i=1}^n f\left(y_i \mid \boldsymbol{\theta}{x_i}\right) \ &=l_1(\boldsymbol{P} \mid \mathbf{x}) l_2(\boldsymbol{\theta} \mid \mathbf{x}, \mathbf{y}), \end{aligned} $$,其中$l_1(\boldsymbol{P} \mid \mathbf{x})=\pi\left(x_0 \mid \boldsymbol{P}\right) \prod{j=1}^n p_{x_{j-1} x_j}$和$l_2(\boldsymbol{\theta} \mid \mathbf{x}, \mathbf{y})=\prod_{i=0}^n f\left(y_i \mid \boldsymbol{\theta}_{x_i}\right)$。给定$\boldsymbol{P}$的通常矩阵beta先验分布,那么可以使用一个简单的拒绝算法从$f(\boldsymbol{P} \mid \mathbf{x})$采样,如第3.3.6节所示。类似地,当$Y \mid \boldsymbol{\theta}$是一个标准指数族分布时,$\theta$的共轭先验通常是可用的,因此,从每个$\theta_i \mid \mathbf{x}, \mathbf{y}$中提取样本也将是直接的 同样,让$\mathbf{x}{-t}=\left(x_0, x_1, \ldots, x{t-1}, x_{t+1}, \ldots, x_n\right)$,很容易看出,对于$i=1, \ldots, K$,
$P\left(x_0=i \mid \mathbf{x}{-0}, \mathbf{y}\right) \propto \pi(i) p{i x_1} f\left(y_1 \mid \boldsymbol{\theta}i\right)$$P\left(x_t=i \mid \mathbf{x}{-t}, \mathbf{y}\right) \propto p_{x_{t-1} i} p_{i x_{t+1}} f\left(y_t \mid \theta_i\right)$ for $1<t<n$
$P\left(x_n=i \mid \mathbf{x}{-n}, \mathbf{y}\right) \propto p{x_{n-1} i} f\left(y_n \mid \boldsymbol{\theta}_i\right)$
,这样就可以建立一个完整的吉布斯采样算法。这类算法的一个缺点是,生成的序列$\mathbf{x}^{(s)}$可以是高度自相关的,特别是当$\mathbf{x}$的元素在其后验分布中有高度依赖性时。在许多情况下,直接从$P(\mathbf{x} \mid \mathbf{y})$取样更有效。做到这一点的标准方法是使用前后向公式或Baum- welch公式(Baum et al., 1970) 首先,注意$P\left(x_n \mid x_{n-1}, \mathbf{y}\right)=P\left(x_n \mid x_{n-1}, y_n\right) \propto p_{x_{n-1} x_n} f\left(y_n \mid x_n\right) \equiv P_n^{\prime}\left(x_n \mid x_{n-1}, \mathbf{y}\right)$,它是$x_n \mid x_{n-1}, \mathbf{y}$的非规范化条件密度。同样,很容易表明我们有一个向后递归关系
$$
P\left(x_t \mid x_{t-1}, \mathbf{y}\right) \propto p_{x_{t-1} x_t} f\left(y_t \mid x_t\right) \sum_{i=1}^K p_{t+1}^{\prime}\left(i \mid x_t, \mathbf{y}\right) \equiv P_t^{\prime}\left(x_t \mid x_{t-1}, \mathbf{y}\right)
$$
,最后,
$$
P\left(x_0 \mid \mathbf{y}\right) \propto \pi\left(x_0\right) f\left(y_0 \mid x_0\right) \sum_{i=1}^K P_1^{\prime}\left(i \mid x_0, \mathbf{y}\right) \equiv P_0^{\prime}\left(x_0 \mid \mathbf{y}\right) .
$$

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。