相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
统计代写|回归分析作业代写Regression Analysis代考|Exact Inferences: Prediction Intervals
Notice that the range of the confidence interval, $1,303.753$ and $1,560.912$, is around 250 Cost units, much narrower than the range shown by the vertical bar in Figure 3.5, which is around 1,000 Cost units. Why? Is this yet another approximation? No. The reason for the big difference is that the mean of all potentially observable values of the Cost variable for jobs with any fixed number of widgets, is very much different than a single potentially observable value of the Cost variable.
It makes sense, intuitively and by the Law of Large Numbers, that you can estimate a mean value more and more precisely, with a margin of error tending towards 0 , when you increase your sample size. However, you cannot estimate a single value with such precision, no matter how large is your sample size.
To understand the distinction between a single value of $Y$ and the mean value of the potentially observable $Y^{\prime}$ s, suppose you have a model for how stock returns behave:
(Return on Company A’s stock) $=\beta_0+\beta_1($ Return on the $S \& P 500$ index $)+\varepsilon$.
(Return on Company A’s stock) $=0.0032+0.67$ (Return on the $S \& P 500$ index) $+e$
Now, suppose we tell you that the return on the SEPP 500 index was $0.005(0.5 \%)$ yesterday. What can you tell us about the return on Company A’s stock? Was it exactly $0.0032+0.67(0.005)=0.00655(0.655 \%)$ ? We hope you can see that the answer is no, it was not $0.655 \%$. In all likelihood, it was not even very close to $0.655 \%$. It might even have been a negative number-it is quite common that individual stock prices move in a direction counter to the market. You cannot predict the actual value of company A’s stock return with precision using this model, because company A’s stock return is not a deterministic function of the $S \mathcal{E} P 500$ return. There are unique features of Company A that make it differ from the market, sometimes substantially, on any given day.
Having a large sample size here means that the estimate of the mean of all potentially observable returns of Company A’s stock, given the SEPP 500 market return is $0.005$, is very close to $0.0032+0.67(0.005)=0.00655$. However, the mean of all potentially observable returns is very different from a single potentially observable return: The individual return differs from the conditional mean (which is approximately $0.00655$ ), by the random error term $e$. This error term can be quite large, leading possibly to a negative Company A return when the $S \mathcal{E P} 500$ return is positive.
统计代写|回归分析作业代写Regression Analysis代考|Hypothesis Testing and p-Values
Some researchers will do nearly anything to get a publication. The incentives are great: Fame, tenure, promotion, annual salary, raises, prime class assignments, and clout in one’s department are a function of quality and quantity of publications.
Historically, statistical results were required to be “statistically significant” to be publishable. In terms of confidence intervals, this means that the interval for the effect (e.g., the $\beta$ ) in question must exclude 0 so that you can confidently state the direction of the effect (positive or negative) of the given $X$ variable on $Y$.
Researchers used the $p$-values that are reported routinely by regression software to determine “statistical significance.” But p-values are easily manipulated, and unscrupulous researchers can analyze data “creatively” to get nearly any $p$-value they would like to see. This has led to an unfortunate practice known as p-hacking, where researchers try analyses many different ways until they get a $p$-value that is statistically significant, and then try to publish the results. Because of their potential for misuse, there is a strong movement in the scientific community away from use of $p$-values, as well as the phrase “statistical significance,” in favor of other statistics and characterizations.
When interpreted correctly and not misused, the $p$-value does provide interesting and somewhat useful information. Thus, we insist that you understand $p$-values very well, so that you can use them correctly and effectively, and so that you will not become a “p-hacker.”
To interpret the $p$-value correctly, you must consider the question, “Is the estimate of the effect of $X$ on $Y$ explainable by chance alone?” But to answer that question, you must first understand what it means for an estimated effect to be explained by chance alone. The following example explains this concept.

回归分析代考
统计代写|回归分析作业代写回归分析代考|精确推论:预测区间
请注意,置信区间$1,303.753$和$1,560.912$的范围大约是250个成本单位,比图3.5中垂直条所示的大约1000个成本单位的范围窄得多。为什么?这是另一种近似吗?不。产生巨大差异的原因是,对于具有固定数量的小部件的作业,Cost变量的所有潜在可观察值的平均值与Cost变量的单个潜在可观察值的平均值相差很大。凭直觉和根据大数定律,当你增加样本容量时,你可以越来越精确地估计出一个平均值,误差范围趋于0,这是有道理的。然而,无论你的样本容量有多大,你都无法以如此精确的精度估计单个值
为了理解$Y$的单个值和潜在可观察到的$Y^{\prime}$ s的平均值之间的区别,假设你有一个股票回报行为的模型:
(a公司股票的回报)$=\beta_0+\beta_1($$S \& P 500$指数的回报$)+\varepsilon$ .
(a公司股票的回报)$=0.0032+0.67$ ($S \& P 500$指数的回报)$+e$假设我们告诉你,昨天SEPP 500指数的回报率是$0.005(0.5 \%)$。你能告诉我们A公司股票的回报率吗?确切地说是$0.0032+0.67(0.005)=0.00655(0.655 \%)$吗?我们希望你能看到答案是否定的,它不是$0.655 \%$。十有八九,它甚至不太接近$0.655 \%$。这甚至可能是一个负数——个股价格与市场走势相反是很常见的。使用该模型无法精确预测A公司股票收益的实际值,因为A公司股票收益不是$S \mathcal{E} P 500$收益的确定函数。A公司有其独特的特点,使其在任何一天都与市场不同,有时甚至有很大的不同
这里有一个大的样本量意味着a公司股票的所有潜在可观察回报的平均值的估计,假定SEPP 500市场回报是$0.005$,非常接近$0.0032+0.67(0.005)=0.00655$。然而,所有潜在可观察到的回报的平均值与单个潜在可观察到的回报的平均值非常不同:通过随机误差项$e$,个体回报与条件平均值(大约是$0.00655$)不同。这个误差项可能相当大,当$S \mathcal{E P} 500$回报为正时,可能导致a公司的回报为负
统计代写|回归分析作业代写回归分析代考|假设检验和p-值
一些研究人员为了得到一篇论文几乎会做任何事。这种激励机制是很强大的:名声、终身职位、晋升、年薪、加薪、主要的课堂任务以及在一个部门的影响力都是出版物的质量和数量的函数
历史上,统计结果必须具有“统计意义”才能发表。就置信区间而言,这意味着有关的效果(例如$\beta$)的区间必须排除0,以便您可以有把握地陈述$Y$上给定$X$变量的效果的方向(正或负)
研究人员使用由回归软件例行报告的$p$ -值来确定“统计显著性”。但是p值很容易被操纵,无道德的研究人员可以“创造性地”分析数据,得到几乎任何他们想看到的$p$值。这导致了一种被称为p-hacking的不幸做法,研究人员尝试用多种不同的方法进行分析,直到得到统计上显著的$p$ -值,然后试图发布结果。由于它们可能被滥用,在科学界有一种强烈的运动,不使用$p$ -values以及短语“统计显著性”,而倾向于其他统计和描述
如果正确解释且没有误用,$p$ -value确实提供了有趣且有些有用的信息。因此,我们坚持要求您非常好地理解$p$ -values,以便您能够正确有效地使用它们,从而不会成为一个“p-hacker”。
要正确解释$p$ -值,你必须考虑这个问题,“对$X$对$Y$的影响的估计仅凭偶然可以解释吗?”但要回答这个问题,你必须首先理解,一个估计的效应只能用偶然解释是什么意思。下面的例子解释了这个概念。

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。