数学代写|数值分析代写numerical analysis代考|MATH3820

相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


数学代写|数值分析代写numerical analysis代考|Lagrange Interpolating Polynomials

So far we’ve discussed two of the three most commonly occurring problems in numerical analysis: Root-finding for nonlinear equations and the solution of linear systems. These problems are each important in their own right but in addition it is not uncommon for another type of problem to require the solution of a problem from one of these classes at each step; an example is Newton’s method for systems (Sec. 2.4), which requires the solution of a linear system at each step.

Polynomial interpolation is of interest in and of itself, but it is also of interest as a theoretical tool to devise and analyze numerical methods. We’ve already seen how linear interpolation (for example, in the method of false position, Sec. 1.1) and quadratic interpolation (for example, in Brent’s method, Sec. 1.6), were useful tools for deriving methods, and cubic interpolation will be used in Ch. 7. Interpolation has also been useful for arguing that those methods should work well for sufficiently smooth functions. We will start by developing this powerful tool somewhat more formally, and then look at related techniques for finding the equation of a smooth curve through a given set of points. These will be applied in later chapters.

Suppose we have a set of $n+1$ points $x_0, x_1, \ldots, x_n$, called nodes (or breakpoints), ordered so that $x_0<x_1<\cdots<x_n$, and a set of associated $y$-values $\nu_0, y_1, \ldots, y_n$. Possibly the $y$-values are found from a function $f(x)$ defined on $\left[x_0, x_n\right]$ by $y_i=f\left(x_i\right)$, or possibly they’re just measured data. The polynomial interpolation problem is to find a polynomial $p(x)$ of degree at most $n$ that interpolates the data $\left(x_0, y_0\right),\left(x_1, y_1\right), \ldots,\left(x_n, y_n\right)$, by which we mean that
$$
\begin{aligned}
y_0=& p\left(x_0\right) \
y_1=& p\left(x_1\right) \
& \vdots \
y_n=& p\left(x_n\right)
\end{aligned}
$$
and we say that $p$ interpolates $f$ (or the data $y_0, y_1, \ldots, y_n$ ) at $x_0, x_1, \ldots, x_n$, and that $p$ is an interpolant. We stress that an interpolant must agree with the function $f$ or the values $y_0, y_1, \ldots, y_n$ at the corresponding points $x_0, x_1, \ldots, x_n$ : An interpolant, unlike a least squares curve, must go through every data point.

数学代写|数值分析代写numerical analysis代考|Piecewise Linear Interpolation

There are many reasons that we might need to approximate a function. On most standard machines, anything that is to be computed must be broken down, at some level, to addition, subtraction, multiplication, or division (plus book-keeping operations) ${ }^4$. Hence when a calculator returns a value for $\sin (3)$ it is only because the function $y=\sin (x)$ has been approximated by a rational function (that is, a ratio of polynomials). At a higher level, we often need to approximate special functions that occur in particular problems. In these cases it is far from clear that we need an interpolant per se, which is required to pass through certain points; we really just need to control the error in our approximation. We’ll discuss approximation in more generality later.

Another common example of a situation that calls for approximation of a function is the numerical solution of an ODE (or the numerical integral of a function), which yields a discrete set of points through which we would like to draw a smooth curve. We might also have measured data through which we would like to pass a curve (say, from a digitized graph or from tracking a moving object). In these cases it is usually desirable to pass the curve through the known data points and so an interpolant, rather than just an approximant, is needed.

Polynomial interpolation has many uses. As we have indicated in the previous section, however, polynomial interpolants are usually not the right choice for approximating a function. The oscillatory nature of high-order polynomial interpolants, plus the errors in evaluating $x^n$ for large $n$, prevent them from being useful as a general-purpose tool. An oscillatory interpolant will be a perfect interpolant $\left(p\left(x_i\right)=y_i\right)$ but will be a very poor approximation of the curve between those points, and we always want to get a good approximation of the underlying function. Taylor polynomials are worse; they are guaranteed to interpolate only at a single point, their center, and while they are an excellent approximation there the quality of the approximation drops off rapidly. In addition, they require derivative information about the function that is rarely available. Polynomial interpolants and Taylor polynomials are of great use in numerical analysis but they are principally used to derive and analyze methods, not as methods in and of themselves. We’ll see examples of this in the next two chapters (numerical integration and the numerical solution of ODEs).

数学代写|数值分析代写numerical analysis代考|MATH3820

凸优化代考

数学代写|数值分析代写数值分析代考|拉格朗日插值多项式


到目前为止,我们已经讨论了数值分析中最常出现的三个问题中的两个:非线性方程的求根问题和线性系统的解。这些问题各自都很重要,但除此之外,其他类型的问题在每一步都需要这些类中的一个来解决问题也并不罕见;一个例子是系统的牛顿方法(第2.4节),它要求在每一步解一个线性系统


多项式插值本身就很有趣,但它作为设计和分析数值方法的理论工具也很有趣。我们已经看到了线性插值(例如,在第1.1节的假位置方法中)和二次插值(例如,在第1.6节的布伦特方法中)是如何对推导方法有用的工具,第7节将使用三次插值。插值在论证那些方法对于足够光滑的函数应该工作得很好时也很有用。我们将从更正式地开发这个强大的工具开始,然后看看寻找通过给定点集的光滑曲线方程的相关技术。这些将在以后的章节中应用


假设我们有一组$n+1$点$x_0, x_1, \ldots, x_n$,称为节点(或断点),其顺序为$x_0<x_1<\cdots<x_n$,以及一组相关的$y$ -值$\nu_0, y_1, \ldots, y_n$。可能$y$ -值是从$y_i=f\left(x_i\right)$在$\left[x_0, x_n\right]$上定义的函数$f(x)$中找到的,也可能它们只是测量数据。多项式插值问题是找到一个多项式$p(x)$的度不超过$n$来插值数据$\left(x_0, y_0\right),\left(x_1, y_1\right), \ldots,\left(x_n, y_n\right)$,我们的意思是
$$
\begin{aligned}
y_0=& p\left(x_0\right) \
y_1=& p\left(x_1\right) \
& \vdots \
y_n=& p\left(x_n\right)
\end{aligned}
$$
,我们说$p$在$x_0, x_1, \ldots, x_n$插值$f$(或数据$y_0, y_1, \ldots, y_n$),而$p$是一个插值函数。我们强调插值必须与函数$f$或$y_0, y_1, \ldots, y_n$在对应点$x_0, x_1, \ldots, x_n$一致:与最小二乘曲线不同,插值必须经过每一个数据点

数学代写|数值分析代写数值分析代考|分段线性插值

.


有很多原因,我们可能需要近似一个函数。在大多数标准机器上,任何要计算的东西都必须在某种程度上分解为加、减、乘或除(加上簿记操作)${ }^4$。因此,当计算器返回$\sin (3)$的值时,这只是因为函数$y=\sin (x)$被一个有理函数(即多项式的比率)近似。在更高的层次上,我们经常需要近似在特定问题中出现的特殊函数。在这些情况下,我们还远远不清楚我们是否需要一个插值函数本身,它需要通过某些点;我们只需要控制近似的误差。稍后我们将更笼统地讨论近似


另一个需要函数逼近的常见例子是ODE(或函数的数值积分)的数值解,它产生一组离散的点,通过这些点我们可以画出一条光滑的曲线。我们也可能已经测量了我们想要通过曲线的数据(例如,从一个数字化的图形或跟踪一个移动的物体)。在这种情况下,通常需要让曲线通过已知的数据点,因此需要一个插值函数,而不仅仅是一个近似值


多项式插值有很多用途。然而,正如我们在前一节中指出的,多项式插值通常不是逼近函数的正确选择。高阶多项式插值的振荡性质,加上对大的$n$求$x^n$的误差,使它们不能作为通用工具使用。振荡插补是一个完美的插补$\left(p\left(x_i\right)=y_i\right)$但它是一个非常差的曲线近似值,我们总是想要得到底层函数的一个很好的近似值。泰勒多项式更糟糕;它们保证只在一个点上插值,也就是它们的中心,虽然它们在那里是一个很好的近似,但近似的质量很快就会下降。此外,它们需要关于函数的导数信息,而这些信息很少能得到。多项式插值和泰勒多项式在数值分析中有很大的用处,但它们主要用于推导和分析方法,而不是作为方法本身。我们将在接下来的两章中看到这方面的例子(数值积分和ode的数值解)

数学代写|数值分析代写numerical analysis代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Scroll to Top