相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
计算机代写|云计算代写cloud computing代考|Heuristic-Based Scheduling Algorithm
The classical bin-packing problem has proved to be NP-Hard [16], and so does the scheduling of streaming applications [13]. There could be a massive amount of tasks involved in each single assignment, so it is computationally infeasible to find the optimal solution in polynomial time. Besides, streaming applications are known for their strict Quality of Service (QoS) constraints on processing time [17], so the efficiency of scheduling is even more important than the result optimality to prevent the violation of the real-time requirement. Therefore, we opt for greedy heuristics rather than exact algorithms such as bin completion [18] and branch-and-price [19], which have exponential time complexity.
The proposed algorithm is a generalisation of the classical First Fit Decreasing (FFD) heuristic. FFD is essentially a greedy algorithm that sorts the items in decreasing order (normally by their size) and then sequentially allocates them into the first bin with sufficient remaining space. However, in order to apply FFD in our multidimensional bin-packing problem, the standard bin-packing procedure has to be generalised in three aspects as shown in Algorithm 1.
Firstly, all the available machines are arranged in descending order by their resource availability so that the more powerful ones get utilised first for task placement. This step is to ensure that the FFD heuristic has a better chance to convey more task communications within the same machine, thus reducing the cumbersome serialisation and de-serialisation procedures that would have been necessary for network transmissions. Since the considered machine characteristics-CPU and memory are measured in different metrics, we define a resource availability function that holistically combines these two dimensions and returns a scalar for each node, as shown in Eq. (5.4).
计算机代写|云计算代写cloud computing代考|Implementation of D-Storm Prototype
A prototype called D-Storm has been implemented to demonstrate dynamic resource-efficient scheduling. which incorporates the following new features into the standard Storm framework:
- It tracks streaming tasks at runtime to obtain their resource usages and the volumes of inbound/outbound communications. This information is critical for making scheduling decisions that avoid resource contention and minimise internode communication.
- It endeavours to pack streaming tasks as compact as possible without causing resource contention, which effectively translates to the reduction of resource footprints while satisfying the performance requirements of streaming applications.
- It automatically reschedules the application whenever a performance issue is spotted or possible task consolidation is identified.
To implement these new features, D-Storm extends the standard Storm release with several loosely coupled modules, thus constituting a MAPE-K (Monitoring, Analysis, Planning, Execution and Knowledge) framework as shown in Fig. 5.2. This architectural concept was first introduced by IBM to design autonomic systems with self-capabilities, such as self-managing, self-healing [21] and selfadapting [22]. In this work, the proposed MAPE-K framework incorporates selfadaptivity and runtime-awareness into D-Storm, allowing it to tackle any performance degradation or mismatch between resource requirements and availability at runtime.
The MAPE-K loop in D-Storm is essentially a feedback control process that considers the current system metrics while making scheduling decisions. Based on the level at which the metrics of interest are collected, the monitoring system generally reports three categories of information-application metrics, task metrics and OS (Operating System) metrics.
The application metrics, such as the topology throughput and complete latency, ${ }^7$ are obtained through the built-in Storm RESTful API and used as a coarsegrained interpretation of the application performance. The volume of incoming workloads is also monitored outside the application in order to examine the system’s sustainability under the current workload.
The task metrics, on the other hand, depict the resource usages of different tasks and their communication patterns within the DSMS. Acquiring this information requires some custom changes to the Storm core, so we introduce the Task Wrapper as a middle layer between the current task and executor abstractions. Each task wrapper encapsulates a single task following the decorator pattern, with monitoring logic transparently inserted into the task execution. Specifically, it obtains the CPU usages in the execute method by making use of the ThreadMXBean class, and it logs the communication traffics among tasks using a custom metric consumer which is registered in the topology building process.

云计算代考
计算机代写|云计算代写cloud computing代考|Heuristic-Based Scheduling Algorithm
.调度算法
经典的bin-packing问题已被证明是NP-Hard[16],流应用程序的调度[13]也是如此。每次分配都可能涉及大量的任务,因此在多项式时间内找到最优解在计算上是不可行的。此外,流应用程序对处理时间[17]有严格的QoS (Quality of Service)约束,因此调度的效率比结果的最优性更重要,以防止违反实时性要求。因此,我们选择贪婪启发式而不是精确算法,如bin completion[18]和branch-and-price[19],它们具有指数级的时间复杂度
该算法是经典的首次拟合递减(FFD)启发式的推广。FFD本质上是一种贪婪算法,它对条目进行递减排序(通常是根据它们的大小),然后依次将它们分配到剩余空间充足的第一个bin中。然而,为了将FFD应用于我们的多维装箱问题,标准装箱过程必须在算法1所示的三个方面进行推广
首先,所有可用的机器按资源可用性降序排列,以便更强大的机器首先用于任务分配。这一步是为了确保FFD启发式有更好的机会在同一台机器中传递更多的任务通信,从而减少网络传输所必需的繁琐的序列化和反序列化过程。由于考虑到的机器特性——cpu和内存是用不同的度量标准度量的,我们定义了一个资源可用性函数,该函数将这两个维度综合起来,并为每个节点返回一个标量,如式(5.4)所示
计算机代写|云计算代写cloud computing代考| D-Storm Prototype的实现
一个名为D-Storm的原型已经实现,以演示动态资源高效调度。它在标准Storm框架中包含了以下新特性:
- 在运行时跟踪流任务,获取流任务的资源使用情况和入/出通信量。该信息对于制定调度决策至关重要,以避免资源争用和最小化节点间通信。
- 它努力将流媒体任务打包得尽可能紧凑,而不引起资源争用,这有效地转化为减少资源占用,同时满足流媒体应用的性能要求。
- 当发现性能问题或识别到可能的任务合并时,它自动重新调度应用程序为了实现这些新特性,D-Storm在标准Storm版本的基础上扩展了几个松散耦合的模块,从而构成了如图5.2所示的MAPE-K(监控、分析、计划、执行和知识)框架。该体系结构概念首先由IBM引入,用于设计具有自我能力的自主系统,如自我管理、自我愈合[21]和自适应[22]。在这项工作中,提出的MAPE-K框架将自适应和运行时感知整合到D-Storm中,允许它处理运行时资源需求和可用性之间的任何性能下降或不匹配D-Storm中的MAPE-K循环本质上是一个反馈控制过程,在制定调度决策时考虑当前系统指标。根据收集相关度量的级别,监视系统通常报告三类信息应用程序度量、任务度量和操作系统(OS)度量应用程序指标,如拓扑吞吐量和完全延迟,${ }^7$通过内置的Storm RESTful API获得,并用作应用程序性能的粗粒度解释。为了检查系统在当前工作负载下的可持续性,还在应用程序外部监视传入工作负载的量另一方面,任务度量描述了不同任务的资源使用情况及其在dms中的通信模式。获取这些信息需要对Storm核心进行一些自定义更改,因此我们引入Task Wrapper作为当前任务和执行器抽象之间的中间层。每个任务包装器都按照装饰器模式封装单个任务,并将监视逻辑透明地插入到任务执行中。具体来说,它通过使用ThreadMXBean类获得execute方法中的CPU使用情况,并使用在拓扑构建过程中注册的自定义度量消费者记录任务之间的通信流量

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。