相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


计算机代写|云计算代写cloud computing代考|Parametric Hypothesis Testing and Test Error

Results for normality testing through the S-W normality test have suggested that elements of $\bar{E}^R$ and $\bar{E}^S$ follow normal distribution, which meets the prior condition of parametric tests. Positive numeric value of every element of $X^{\bar{E}}(3.12)$ articulated in Table $3.4$ refers to the fact that energy consumption by SRTDVMC is numerically lower compared to $R T D V M C$ for different workload scenarios as presented in experiments. We hence aim to perform parametric hypothesis test to find whether simulation output samples, $X_{N T, P L}^{\bar{E}}$ (3.12) featuring difference between two corresponding means of $R T D V M C$ and SRTDVMC associated to a unique combination of Nectar and PlanetLab workload is statistically significant. Our sample size is less than 30 and means of no more than two DVMC algorithms (i.e., SRTDVMC and $R T D V M C$ ) would be compared. Therefore, among different parametric tests we opt to use the $t$-test, instead of $Z$-test, $F$-test, and ANOVA. Based on the data samples, the $t$-tests can be classified into three groups: One sample, Two Independent Samples and Paired Samples t-test. For a specific combination of $N L$ and $P L$, corresponding $\bar{E}{N T, P L}^R$ and $\bar{E}{N T, P L}^S$ has a relationship, as $\bar{E}{N T, P L}^R$ and $\bar{E}{N T, P L}^S$ represent $\bar{E}_{\mathrm{CDC}}$ for $R T D V M C$ and SRTDVMC respectively, under a particular workload distribution scenario. Therefore, the paired two tail $t$-test is performed.

The null hypothesis with the $t$-test is that mean $\mathrm{CDC}$ energy consumption with RTDVMC, $\bar{E}^R$ and mean CDC energy consumption with SRTDVMC, $\bar{E}^S$ are same, while the alternative hypothesis is that $\bar{E}^S<\bar{E}^R$. Utilizing (3.17)-(3.19), the test statistic for the $t$-test, denoted by $t_{\bar{X}} \bar{E}$ is found as $2.13$ and the corresponding $p$ value is found as $7.10693 \times 10^{-6}$, which is lower than critical value, $\alpha$ as $0.05$. For clear understanding of the interpretation of the $t$-test result, we have first explained the performed the $t$-test in more details in the following.

计算机代写|云计算代写cloud computing代考|Conclusions and Future Work

While correlation exists between VMRT and energy consumption, traditional DVMC algorithms except RTDVMC do not consider heterogenous VMRT in VM consolidation decision process. Furthermore, existing algorithms consolidate VMs in as few PMs as possible based on the premise that optimal energy efficiency can be achieved with maximum load on PM. However, for state-of-the-art PMs, energy efficiency rather drops above $70 \%$ load level. Combining lack of consideration of heterogeneous VMRT and ignoring changed energy-efficient characteristics of underlying PMs, existing DVMC algorithms lack in performance in the context of real Cloud scenario with heterogeneous VMRT and state-of-the-art PMs.

RTDVMC considers heterogeneous VMRT. However, issues with RTDVMC are twofold – first, it does not take the changed energy-efficiency characteristics of modern PMs into account and second, it only aims to minimize energy consumption without considering VM migration minimization. VM migration, nonetheless, increases network overload causing degraded QoS and increased energy consumption by networking equipment. VM migration being an unavoidable part of VM consolidation, minimizing both energy consumption and VM migrations at the same time are confronting objectives. As such, in this paper, we have brought forth a novel multi-objective DVMC algorithm, namely, $S R T D V M C$, which aims to reduce VM migrations without compromising energy efficiency. Consideration of heterogeneous VMRT values in VM consolidation decision process enables SRTDVMC to be more energy efficient. On top of that, contrast to RTDVMC, SRTDVMC incorporates consideration both benefit and cost prior any VM migration. As a result, it is robust against the changed energy-efficiency characteristics of underlying PMs and can reduce. VM migration without compromising energy-efficiency compared to RTDVMC.

Performance of SRTDVMC has been tested through the most popular Cloudbased simulation tool, namely, CloudSim, in the context of hundreds of different cutting-edge PMs and thousands of VMs representing heterogenous VMRT of real Nectar Cloud, as the assigned workload reflects real Cloud workload obtained from PlanetLab. The empirical outcome exhibits the superiority of SRTDVMC over RTDVMC in both metrics – CDC energy consumption and VM migration. Three key elements are extracted from our research. First, based on our experiments, VMRT impacts on both aspects – energy consumption and VM migration, and hence, DVMC algorithms are needed to be developed considering the presence of heterogeneous VMRT. Second, such working principal of existing algorithms that maximum energy efficiency is achievable at maximum load on PM is found as false for state-of-the-art PMs, resulting into performance inefficiencies. Our proposed SRTDVMC algorithm addresses this issue. Third, simulation results show that if corresponding cost and benefit are considered prior VM migration, then concomitant optimization of both aspects – reduction of energy consumption and VM migration can be achieved. In the following section, we have suggested several future research pathways to further improve the energy-efficient management of CDC.

计算机代写|云计算代写cloud computing代考|CSE356

云计算代考

计算机代写|云计算代写cloud computing代考|参数假设检验和测试误差

. .计算机代写|云计算代写cloud computing代考|


通过S-W正态检验的正态检验结果表明,$\bar{E}^R$和$\bar{E}^S$的元素服从正态分布,满足参数检验的先验条件。表$3.4$中连接的$X^{\bar{E}}(3.12)$的每个元素的正数值指的是在实验中给出的不同工作负载场景下,SRTDVMC的能量消耗在数字上低于$R T D V M C$。因此,我们的目的是进行参数假设检验,以确定模拟输出样本$X_{N T, P L}^{\bar{E}}$(3.12),其特征是$R T D V M C$和SRTDVMC的两个对应均值之间的差异与花酿和PlanetLab工作负载的独特组合相关,是否具有统计学意义。我们的样本量小于30,将比较不超过两种DVMC算法(即SRTDVMC和$R T D V M C$)的均值。因此,在不同的参数检验中,我们选择使用$t$ -test,而不是$Z$ -test, $F$ -test和方差分析。根据数据样本,可以将$t$ -test分为三组:单样本、两独立样本和配对样本t检验。对于$N L$和$P L$的特定组合,对应的$\bar{E}{N T, P L}^R$和$\bar{E}{N T, P L}^S$具有关系,因为在特定的工作负载分布场景下,$\bar{E}{N T, P L}^R$和$\bar{E}{N T, P L}^S$分别代表$R T D V M C$和SRTDVMC的$\bar{E}_{\mathrm{CDC}}$。 .执行双尾配对$t$ -test


使用$t$ -test的原假设是,使用RTDVMC的平均值$\mathrm{CDC}$能耗,$\bar{E}^R$和使用SRTDVMC的平均值CDC能耗,$\bar{E}^S$是相同的,而备择假设是$\bar{E}^S<\bar{E}^R$。利用(3.17)-(3.19),$t$ -test的测试统计数据(用$t_{\bar{X}} \bar{E}$表示)被发现为$2.13$,相应的$p$值被发现为$7.10693 \times 10^{-6}$,它低于临界值,$\alpha$被发现为$0.05$。为了更清楚地理解$t$ -test结果的解释,我们首先在下面更详细地解释了$t$ -test的执行。

计算机代写|云计算代写cloud computing代考|结论和未来的工作

.


虽然VMRT与能耗存在相关性,但除RTDVMC外,传统DVMC算法在VM整合决策过程中没有考虑异构VMRT。此外,现有算法基于在PM负载最大的情况下实现最佳能源效率的前提下,将vm合并到尽可能少的PM中。然而,对于最先进的pm,能源效率反而下降到$70 \%$负载水平以上。现有DVMC算法缺乏对异构VMRT的考虑,又忽略了底层pm的节能特性的变化,因此在具有异构VMRT和最先进pm的真实云场景背景下,性能不足

RTDVMC考虑异构VMRT。然而,RTDVMC的问题有两个方面——首先,它没有考虑到现代pm的能源效率特征的变化;其次,它只致力于最小化能源消耗,而不考虑VM迁移最小化。虚拟机迁移会增加网络过载,导致QoS降低,网络设备能耗增加。VM迁移是VM整合中不可避免的一部分,同时最小化能耗和VM迁移是我们面临的目标。因此,在本文中,我们提出了一种新的多目标DVMC算法,即$S R T D V M C$,其目的是在不影响能源效率的情况下减少VM迁移。在虚拟机整合决策过程中考虑异构VMRT值可以使SRTDVMC更节能。最重要的是,与RTDVMC相比,SRTDVMC在任何VM迁移之前都考虑了收益和成本。因此,它对潜在pm的能源效率特性的变化具有鲁棒性,并且可以降低。与RTDVMC相比,VM迁移不会影响能源效率


SRTDVMC的性能已经通过最流行的基于云的仿真工具CloudSim进行了测试,该工具在数百个不同的前沿pm和数千个vm的背景下表示真实甘露云的异构VMRT,因为分配的工作负载反映了从PlanetLab获得的真实云工作负载。实证结果表明SRTDVMC在CDC能耗和VM迁移两个指标上优于RTDVMC。从我们的研究中提炼出三个关键要素。首先,根据我们的实验,VMRT对能耗和VM迁移两个方面都有影响,因此需要考虑异构VMRT的存在,开发DVMC算法。其次,现有算法认为在PM负载最大的情况下可获得最大能源效率的工作原理对于最先进的PM是错误的,从而导致性能效率低下。我们提出的SRTDVMC算法解决了这个问题。第三,仿真结果表明,如果在虚拟机迁移之前考虑相应的成本和收益,则可以实现降低能耗和虚拟机迁移这两个方面的同时优化。在接下来的部分中,我们提出了未来进一步完善CDC节能管理的几条研究路径

计算机代写|操作系统代写operating systems代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。