经济代写|计量经济学代写Econometrics代考|ECON2271

相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


经济代写|计量经济学代写Econometrics代考|Testing for Serial Correlation

A very substantial fraction of all the literature in econometrics has been devoted to the problem of testing for serial correlation in the error terms of regression models. The largest part of that fraction has dealt with testing the null hypothesis that the errors for a linear regression model are serially independent against the alternative that they follow an $\mathrm{AR}(1)$ process. Although serial correlation is certainly a widespread phenomenon with time-series data, so that testing for it is clearly important, the amount of effort devoted to this problem seems somewhat disproportionate. As we will see, asymptotic tests for serial correlation can readily be derived as applications of the GaussNewton regression. Only when it is possible to make inferences that are exact in finite samples is there any reason to make use of more specialized and difficult procedures.

Suppose we wish to test the null hypothesis that the errors $u_t$ in the model
$$
y_t=x_t(\boldsymbol{\beta})+u_t
$$
are serially independent against the alternative that they follow an $\operatorname{AR}(1)$ process. As we have already seen, for observations $t=2, \ldots, n$, this alternative model can be written as
$$
y_t=x_t^{\prime}(\boldsymbol{\beta}, \rho)+\varepsilon_t \equiv x_t(\boldsymbol{\beta})+\rho\left(y_{t-1}-x_{t-1}(\boldsymbol{\beta})\right)+\varepsilon_t,
$$
where $\varepsilon_t$ is assumed to be $\operatorname{IID}\left(0, \omega^2\right)$. As we saw in Chapter 6 , any restrictions on the parameters of a nonlinear regression function can be tested by running a Gauss-Newton regression evaluated at estimates that are root- $n$ consistent under the null hypothesis. These would typically, but not necessarily, be restricted NLS estimates. Thus, in this case, the restriction that $\rho=0$ can be tested by regressing $y_t-x_t^{\prime}$ on the derivatives of the regression function $x_t^{\prime}(\boldsymbol{\beta}, \rho)$ with respect to all of the parameters, where both $x_t^{\prime}$ and its derivatives are evaluated at the estimates of the parameter vector $[\boldsymbol{\beta} \vdots \rho]$ under the null.

经济代写|计量经济学代写Econometrics代考|Common Factor Restrictions

If the regression function is misspecified, the residuals may display serial correlation even when the error terms are in fact serially independent. This might happen if a variable that was itself serially correlated, or a lagged dependent variable, were incorrectly omitted from the regression function. In such a case, we can in general make valid inferences only by eliminating the misspecification rather than by “correcting” the model for AR(1) errors or some other simple error process. If we simply do the latter, as used to be done all too frequently in applied work, we may well end up with a seriously misspecified model.

There is no universally effective way to avoid misinterpreting misspecification of the regression function as the presence of serially correlated errors. Model specification is an art as much as a science, and with the short samples typical of time-series data we can never expect to detect all forms of misspecification. Nevertheless, there is one family of tests that has been shown to be very effective in detecting misspecification in models which appear to have errors that follow a low-order AR process. These are tests of what are, for reasons that will be apparent shortly, generally called common factor restrictions. The basic idea of testing common factor restrictions, although not the terminology, may be found in Sargan (1964). More recent references include Hendry and Mizon (1978), Mizon and Hendry (1980), and Sargan (1980a). An illuminating example is provided by Hendry (1980), who presents a grossly misspecified model that yields apparently sensible results after “correction” for $\mathrm{AR}(1)$ errors and then shows that a test for common factor restrictions would detect the misspecification.

In order to fix ideas, we will assume for the moment that the model to be tested is a linear regression model that apparently has $\operatorname{AR}(1)$ errors. It is natural to think of there being threc nested models in this case. The first of these is the original linear regression model with error terms assumed to be serially independent,
$$
H_0: y_t=\boldsymbol{X}t \boldsymbol{\beta}+u_t, \quad u_t \sim \operatorname{IID}\left(0, \sigma^2\right) . $$ The second is the nonlinear model that results when the errors $u_t$ of (10.85) are assumed to follow the AR(1) process $u_t=\rho u{t-1}+\varepsilon_t$,
$$
H_1: y_t=\boldsymbol{X}t \boldsymbol{\beta}+\rho\left(y{t-1}-\boldsymbol{X}{t-1} \boldsymbol{\beta}\right)+\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right) . $$ The third is the linear model that results when the nonlinear restrictions on (10.86) are relaxed: $$ H_2: \quad y_t=\boldsymbol{X}_t \boldsymbol{\beta}+\rho y{t-1}+\boldsymbol{X}_{t-1} \boldsymbol{\gamma}+\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right),
$$
where $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ are both $k$-vectors. We encountered $H_2$ previously, in Section $10.3$, where it was used to obtain an initial consistent estimate of $\rho$.

经济代写|计量经济学代写Econometrics代考|ECON2271

计量经济学代考

经济代写|计量经济学代写Econometrics代考|序列相关性检验

.


在计量经济学的所有文献中,有相当大一部分致力于检验回归模型误差项中的序列相关性问题。该部分的最大部分处理了零假设的检验,即线性回归模型的误差与它们遵循$\mathrm{AR}(1)$过程的替代方案是串行独立的。尽管序列相关性是时间序列数据的普遍现象,因此对其进行测试显然很重要,但在这个问题上投入的精力似乎有些不成比例。正如我们将看到的,序列相关的渐近检验可以很容易地作为高斯牛顿回归的应用得到。只有当有可能在有限样本中作出精确的推论时,才有理由使用更专门和更困难的程序


假设我们希望检验零假设,即模型
$$
y_t=x_t(\boldsymbol{\beta})+u_t
$$
中的错误$u_t$与它们遵循$\operatorname{AR}(1)$过程的替代方案是串行独立的。正如我们已经看到的,对于观察$t=2, \ldots, n$,这个替代模型可以写成
$$
y_t=x_t^{\prime}(\boldsymbol{\beta}, \rho)+\varepsilon_t \equiv x_t(\boldsymbol{\beta})+\rho\left(y_{t-1}-x_{t-1}(\boldsymbol{\beta})\right)+\varepsilon_t,
$$
,其中$\varepsilon_t$假设为$\operatorname{IID}\left(0, \omega^2\right)$。正如我们在第6章中所看到的,对非线性回归函数参数的任何限制都可以通过运行高斯-牛顿回归来测试,在零假设下的估计值为root- $n$一致。这些通常(但不一定)是受限的NLS估计。因此,在本例中,可以通过在回归函数$x_t^{\prime}(\boldsymbol{\beta}, \rho)$对所有参数的导数上回归$y_t-x_t^{\prime}$来测试$\rho=0$的限制,其中$x_t^{\prime}$和它的导数都是在null下的参数向量$[\boldsymbol{\beta} \vdots \rho]$的估计值上求值。

经济代写|计量经济学代写Econometrics代考|公共因素限制

.


如果回归函数指定错误,即使误差项实际上是序列独立的,残差也可能显示序列相关。如果一个变量本身是序列相关的,或者一个滞后的因变量被错误地从回归函数中遗漏了,就可能发生这种情况。在这种情况下,我们通常只能通过消除错误规范而不是通过为AR(1)错误或其他一些简单的错误过程“纠正”模型来做出有效的推断。如果我们只是做后者,就像在应用工作中经常做的那样,我们很可能以一个严重错误指定的模型而告终


没有一种普遍有效的方法可以避免将回归函数的错误规范误解为存在序列相关错误。模型规范既是一门科学,也是一门艺术,对于时间序列数据的典型短样本,我们永远不能期望检测到所有形式的错误规范。尽管如此,有一类测试已被证明非常有效地检测模型中的错误规范,这些模型似乎具有遵循低阶AR过程的错误。这些测试通常被称为共同因素限制,原因很快就会清楚。Sargan(1964)给出了测试公共因素限制的基本思想,尽管没有给出术语。最近的参考文献包括亨德利和米森(1978)、米森和亨德利(1980)和萨根(1980a)。Hendry(1980)提供了一个具有启发意义的例子,他提出了一个严重错误指定的模型,在对$\mathrm{AR}(1)$错误进行“修正”之后,该模型产生了明显合理的结果,然后表明对公共因素限制的测试将检测到错误说明


为了修正想法,我们暂时假设要测试的模型是一个明显有$\operatorname{AR}(1)$错误的线性回归模型。在这种情况下,很自然地认为有三个嵌套模型。第一个是原始线性回归模型,误差项假设是序列独立的,
$$
H_0: y_t=\boldsymbol{X}t \boldsymbol{\beta}+u_t, \quad u_t \sim \operatorname{IID}\left(0, \sigma^2\right) . $$第二个是非线性模型,当(10.85)的误差$u_t$假设遵循AR(1)过程$u_t=\rho u{t-1}+\varepsilon_t$,
$$
H_1: y_t=\boldsymbol{X}t \boldsymbol{\beta}+\rho\left(y{t-1}-\boldsymbol{X}{t-1} \boldsymbol{\beta}\right)+\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right) . $$第三个是线性模型,当(10.86)的非线性限制放松时:$$ H_2: \quad y_t=\boldsymbol{X}t \boldsymbol{\beta}+\rho y{t-1}+\boldsymbol{X}{t-1} \boldsymbol{\gamma}+\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right),
$$
其中$\boldsymbol{\beta}$和$\boldsymbol{\gamma}$都是$k$ -vector。我们之前在$10.3$部分遇到过$H_2$,在那里它被用来获得$\rho$的初始一致估计。

经济代写|博弈论代写Game Theory代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Scroll to Top