经济代写|计量经济学代写Econometrics代考|BEA472

相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


经济代写|计量经济学代写Econometrics代考|Estimating Regression Models with AR

Suppose that we want to estimate a nonlinear regression model with error terms that follow an $\mathrm{AR}(1)$ process:
$$
y_t=x_t(\boldsymbol{\beta})+u_t, \quad u_t=\rho u_{t-1}+\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right) .
$$
Because $u_{t-1}=y_{t-1}-x_{t-1}(\boldsymbol{\beta})$, this model can be rewritten as
$$
y_t=x_t(\boldsymbol{\beta})+\rho\left(y_{t-1}-x_{t-1}(\boldsymbol{\beta})\right)+\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right),
$$
which is also a nonlinear regression model, but one with error terms that are (by assumption) serially uncorrelated. Since (10.12) is a nonlinear regression model with well-behaved error terms, it seems natural to estimate it by nonlinear least squares and to make inferences about it by using the Gauss-Newton regression. The regression function is simply
$$
x_t^{\prime}(\boldsymbol{\beta}, \rho)=x_t(\boldsymbol{\beta})+\rho\left(y_{t-1}-x_{t-1}(\boldsymbol{\beta})\right),
$$
which depends on $\rho$ as well as on $\boldsymbol{\beta}$.
There are two potential problems with (10.12). First of all, the regression function $x_t^{\prime}(\boldsymbol{\beta}, \rho)$ necessarily depends on $y_{t-1}$, whether or not $x_t(\boldsymbol{\beta})$ depends on any lagged values of the dependent variable. As we saw in Chapter 5 , this dependence does not prevent nonlinear least squares from having desirable asymptotic properties provided that certain regularity conditions are satisfied. It can be shown that, as long as $x_t(\boldsymbol{\beta})$ satisfies the regularity conditions of Theorems $5.1$ and $5.2$ and the stationarity condition that $|\rho|<1$ holds, this will indeed be the case for (10.12). However, if the stationarity condition did not hold, standard results about nonlinear least squares, in particular Theorem 5.2, the asymptotic normality theorem, would no longer apply to (10.12).

The second problem with (10.12) is what to do about the first observation. Presumably we do not have data for $y_0$ and for all the exogenous and predetermined variables needed to evaluate $x_0(\boldsymbol{\beta})$, since if we did the sample would not have started with the observation corresponding to $t=1$. Thus we cannot evaluate $x_1^{\prime}(\boldsymbol{\beta}, \rho)$, which depends on $y_0$ and $x_0(\boldsymbol{\beta})$. The easiest solution to this problem is simply to drop the first observation, requiring that (10.12) hold only for observations 2 through $n$. Dropping one observation makes no difference asymptotically, and so we can safely do so whenever the sample size is reasonably large.

经济代写|计量经济学代写Econometrics代考|Higher-Order AR Processes

Although the $\mathrm{AR}(1)$ process (10.01) is by far the most popular one in applied econometric work, there are many other stochastic processes that could reasonably be used to describe the evolution of error terms over time. Anything resembling a complete treatment of this topic would lead us far afield, into the vast literature on time-series methods. This literature, which evolved quite independently of econometrics and has influenced it substantially in recent years, deals with many aspects of the modeling of time series but especially with models in which variables depend only (or at least primarily) on their own past values. Such models are obviously appropriate for describing the evolution of many physical systems and may be appropriate for some economic systems as well. However, much of the use of time-series methods in econometrics has been to model the evolution of the error terms that adhere to more conventional regression models, and we will treat only that aspect of time-series methods here. A classic reference on times-series techniques is Box and Jenkins (1976), some books that may be more accessible to economists are Harvey (1981, 1989) and Granger and Newbold (1986), and a review of time-series methods for econometricians is Granger and Watson (1984).
The $\operatorname{AR}(1)$ process (10.01) is actually a special case of the $p^{\text {th }{\text {-order }}}$ autoregressive, or $\operatorname{AR}(p)$, process $$ u_t=\rho_1 u{t-1}+\rho_2 u_{t-2}+\cdots+\rho_p u_{t-p}+\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right),
$$
in which $u_t$ depends on up to $p$ lagged values of itself, as well as on $\varepsilon_t$. The $\operatorname{AR}(p)$ process (10.35) can be expressed more compactly as
$$
\left(1-\rho_1 L-\rho_2 L^2-\cdots-\rho_p L^p\right) u_t=\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right)
$$ where $L$ denotes the lag operator. The lag operator $L$ has the property that when $L$ multiplies anything with a time subscript, this subscript is lagged one period. Thus
$$
L u_t=u_{t-1}, \quad L^2 u_t=u_{t-2}, \quad L^p u_t=u_{t-p},
$$
and so on. The expression in parentheses in (10.36) is a polynomial in the lag operator $L$, with coefficients 1 and $-\rho_1, \ldots,-\rho_p$. If we define $A(L, \rho)$ as being equal to this polynomial, $\rho$ representing the vector $\left[\begin{array}{l:l:l:l}\rho_1 & \rho_2 & \cdots & \rho_p\end{array}\right]$, we can write (10.36) even more compactly as
$$
A(L, \boldsymbol{\rho}) u_t=\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right) .
$$

经济代写|计量经济学代写Econometrics代考|BEA472

计量经济学代考

经济代写|计量经济学代写Econometrics代考|估计AR的回归模型


假设我们想估计一个非线性回归模型,其误差项遵循$\mathrm{AR}(1)$过程:
$$
y_t=x_t(\boldsymbol{\beta})+u_t, \quad u_t=\rho u_{t-1}+\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right) .
$$
因为$u_{t-1}=y_{t-1}-x_{t-1}(\boldsymbol{\beta})$,这个模型可以重写为
$$
y_t=x_t(\boldsymbol{\beta})+\rho\left(y_{t-1}-x_{t-1}(\boldsymbol{\beta})\right)+\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right),
$$
,这也是一个非线性回归模型,但误差项(根据假设)是序列不相关的。由于(10.12)是一个具有良好误差项的非线性回归模型,用非线性最小二乘估计它,然后用高斯-牛顿回归对它进行推断似乎是很自然的。回归函数就是
$$
x_t^{\prime}(\boldsymbol{\beta}, \rho)=x_t(\boldsymbol{\beta})+\rho\left(y_{t-1}-x_{t-1}(\boldsymbol{\beta})\right),
$$
,它依赖于$\rho$和$\boldsymbol{\beta}$。
(10.12)有两个潜在问题。首先,回归函数$x_t^{\prime}(\boldsymbol{\beta}, \rho)$必然依赖于$y_{t-1}$,不管$x_t(\boldsymbol{\beta})$是否依赖于因变量的滞后值。正如我们在第5章中看到的,只要满足某些规律性条件,这种依赖性并不妨碍非线性最小二乘具有理想的渐近性质。可以证明,只要$x_t(\boldsymbol{\beta})$满足$5.1$和$5.2$定理的正则性条件和$|\rho|<1$所具有的平稳性条件,对于(10.12)确实是这样。但是,如果平稳性条件不成立,关于非线性最小二乘的标准结果,特别是定理5.2,渐近正态性定理,将不再适用于(10.12)


(10.12)的第二个问题是如何处理第一个观察结果。假设我们没有$y_0$以及评估$x_0(\boldsymbol{\beta})$所需的所有外生变量和预定变量的数据,因为如果我们这样做了,样本就不会从$t=1$对应的观察开始。因此我们不能评估$x_1^{\prime}(\boldsymbol{\beta}, \rho)$,它依赖于$y_0$和$x_0(\boldsymbol{\beta})$。这个问题最简单的解决方案就是删除第一个观察值,要求(10.12)只保存观察值2到$n$。删除一个观察结果在渐近上不会产生任何差异,因此我们可以在样本量相当大的情况下安全地这样做

经济代写|计量经济学代写Econometrics代考|高阶AR过程


虽然$\mathrm{AR}(1)$过程(10.01)是目前应用计量经济学工作中最受欢迎的过程,但还有许多其他的随机过程可以合理地用来描述误差项随时间的演变。任何类似于对这个主题的完整处理都将把我们带向很远的地方,进入关于时间序列方法的大量文献中。这一文献的发展完全独立于计量经济学,并在近年来对计量经济学产生了重大影响,它涉及时间序列建模的许多方面,但尤其涉及变量仅依赖(或至少主要)自身过去值的模型。这种模型显然适用于描述许多物理系统的演化,也可能适用于某些经济系统。然而,在计量经济学中,时间序列方法的大部分使用都是为了对更传统的回归模型中的误差项的演化进行建模,我们在这里只讨论时间序列方法的这一方面。关于时间序列方法的经典参考文献是Box和Jenkins(1976),经济学家更容易读到的一些书是Harvey(1981,1989)和Granger和Newbold(1986),对计量经济学家时间序列方法的综述是Granger和Watson(1984)。$\operatorname{AR}(1)$进程(10.01)实际上是$p^{\text {th }{\text {-order }}}$自回归进程(或$\operatorname{AR}(p)$) $$ u_t=\rho_1 u{t-1}+\rho_2 u_{t-2}+\cdots+\rho_p u_{t-p}+\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right),
$$
的一个特例,其中$u_t$依赖于自身的滞后值(多达$p$),也依赖于$\varepsilon_t$。$\operatorname{AR}(p)$进程(10.35)可以更简洁地表示为
$$
\left(1-\rho_1 L-\rho_2 L^2-\cdots-\rho_p L^p\right) u_t=\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right)
$$,其中$L$表示滞后操作符。滞后运算符$L$的属性是,当$L$乘以任何带有时间下标的内容时,这个下标将滞后一个周期。因此
$$
L u_t=u_{t-1}, \quad L^2 u_t=u_{t-2}, \quad L^p u_t=u_{t-p},
$$
等等。(10.36)括号中的表达式是滞后算符$L$中的一个多项式,具有系数1和$-\rho_1, \ldots,-\rho_p$。如果我们定义$A(L, \rho)$等于这个多项式,$\rho$表示向量$\left[\begin{array}{l:l:l:l}\rho_1 & \rho_2 & \cdots & \rho_p\end{array}\right]$,我们可以将(10.36)更简洁地写成
$$
A(L, \boldsymbol{\rho}) u_t=\varepsilon_t, \quad \varepsilon_t \sim \operatorname{IID}\left(0, \omega^2\right) .
$$

经济代写|博弈论代写Game Theory代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Scroll to Top