相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
数学代写|密码学代写cryptography theory代考|Elliptic Curve Cryptography
This particular algorithm may be the most mathematically challenging that you will encounter in this book, or in any other introductory cryptography book. If you feel uncertain as to your mathematical acumen, you may wish to review Chaps. 4 and 5 (with particular attention to 5). Throughout the chapter, there are brief reminders as to key mathematical concepts to help you follow along. If your goal is a career related to cryptography, then you will, at some point, need to master this material. However, for those readers attempting to get a general overview of cryptography, whose primary focus is on computer/network security, then it is perfectly acceptable if you finish this chapter with just a broad overview of elliptic curve cryptography. Since this topic is often difficult for many readers, a chapter (albeit a short one) has been devoted to just this topic. Furthermore, in some cases, key concepts are explained more than once with slightly different wording to try and aid your understanding.
The reason why elliptic curve cryptography (commonly termed ECC) is more difficult for many people to learn is that fewer people have any prior exposure to the underlying mathematics. When one compares ECC to RSA, this difference becomes quite clear. Most people were exposed to prime numbers, factoring numbers, raising a number to a certain power, and basic arithmetic in primary and secondary school. But far fewer people are exposed to elliptic curves and discrete logarithms in school.
数学代写|密码学代写cryptography theory代考|General Overview
Elliptic curves have been studied, apart from cryptographic applications, for well over a century. As with other asymmetric algorithms, the mathematics has been a part of number theory and algebra, long before being applied to cryptography. As you saw in Chap. 10, many asymmetric algorithms depend on algebraic groups. There are multiple means to form finite groups. Elliptic curves can be used to form groups, and thus are appropriate for cryptographic purposes. There are two types of elliptic curve groups. The two most common (and the ones used in cryptography) are elliptic curve groups based on $\mathrm{F}_{\mathrm{p}}$ where $\mathrm{p}$ is prime and those based on $\mathrm{F}^{\mathrm{m}}$ (Rabah 2006). F, as you will see in this chapter, is the field being used. F is used because we are describing a field. Elliptic curve cryptography is an approach to public-key cryptography, based on elliptic curves over finite fields.
Remember that a field is an algebraic system consisting of a set, an identity element for each operation, two operations, and their respective inverse operations. A finite field, also called a Galois field, is a field with a finite number elements. That number is called the order of the field. Elliptic curves used for cryptographic purposes were first described in 1985 by Victor Miller (IBM) and Neil Koblitz (University of Washington). The security of elliptic curve cryptography is based on the fact that finding the discrete logarithm of a random elliptic curve element with respect to a publicly known base point is difficult to the point of being impractical to do (Rabah 2006).
Neal Koblitz is a mathematics professor at the University of Washington and a very well-known cryptographic researcher. In addition to his work on elliptic curve cryptography, he has published extensively in mathematics and cryptography. Victor Miller is a mathematician with the Institute for Defense Analysis in Princeton. He has worked on compression algorithms, combinatorics, and various subtopics in the field of cryptography.
First, we need to discuss what an elliptic curve is. An elliptic curve is the set of points that satisfy a specific mathematical equation. The equation for an elliptic curve looks something like this (Hankerson et al. 2006):
$$
y^2=x^3+A x+B
$$
You can see this equation graphed in Fig. 11.1.

密码学代考
数学代写|密码学代写cryptography theory代考|椭圆曲线密码学
这个特殊的算法可能是你在本书中,或在任何其他介绍性密码学书籍中遇到的最具数学挑战性的算法。如果你对自己的数学能力感到不确定,你可能希望复习第4章和第5章(特别注意第5章)。整章都有关于关键数学概念的简短提醒,以帮助你理解。如果您的目标是从事与密码学相关的职业,那么在某种程度上,您需要掌握这些材料。然而,对于那些主要关注计算机/网络安全的试图获得密码学概览的读者来说,如果您在本章结束时只对椭圆曲线密码学进行概览,则完全可以接受。由于这个主题对许多读者来说通常很难,因此专门用了一章(尽管很短)来讨论这个主题。此外,在某些情况下,为了帮助理解,关键概念会用稍微不同的措辞解释不止一次
为什么椭圆曲线密码学(通常被称为ECC)对许多人来说比较困难,原因是很少有人事先接触过底层的数学。当人们比较ECC和RSA时,这种差异就变得非常明显。大多数人在小学和中学时都接触过质数、因式分解、一个数的某次方以及基本的算术。但是在学校接触到椭圆曲线和离散对数的人却少得多
数学代写|密码学代写cryptography theory代考|General Overview
. crypgraphy theory . crypgraphy theory
除了密码应用之外,椭圆曲线的研究已经有一个多世纪了。与其他非对称算法一样,在应用到密码学之前,数学一直是数论和代数的一部分。正如你在第10章中看到的,许多非对称算法依赖于代数群。形成有限群有多种方法。椭圆曲线可以用来形成组,因此适合于加密目的。椭圆曲线群有两种类型。两个最常见的(也是密码学中使用的)是基于$\mathrm{F}_{\mathrm{p}}$的椭圆曲线组(其中$\mathrm{p}$是素数)和基于$\mathrm{F}^{\mathrm{m}}$的椭圆曲线组(Rabah 2006)。F,正如你将在本章中看到的,是所使用的字段。使用F是因为我们在描述一个场。椭圆曲线密码学是一种基于有限域上椭圆曲线的公钥密码学方法
记住,字段是一个代数系统,由一个集合、每个操作的一个单位元、两个操作以及它们各自的逆操作组成。有限场,也称为伽罗瓦场,是一个具有有限数量元素的场。这个数字叫做场的顺序。1985年,Victor Miller (IBM)和Neil Koblitz(华盛顿大学)首次描述了用于加密目的的椭圆曲线。椭圆曲线密密学的安全性是基于这样一个事实:找到一个随机椭圆曲线元素相对于一个公开的基点的离散对数是非常困难的,以至于难以实现(Rabah, 2006)
尼尔·科布利茨(Neal Koblitz)是华盛顿大学的数学教授,也是一位非常著名的密码研究者。除了在椭圆曲线密码学方面的工作外,他还在数学和密码学方面发表了大量文章。维克多·米勒(Victor Miller)是普林斯顿国防分析研究所的数学家。他曾在密码学领域的压缩算法、组合学和各种子主题上工作
首先,我们需要讨论什么是椭圆曲线。椭圆曲线是满足特定数学方程的点的集合。椭圆曲线的方程是这样的(Hankerson et al. 2006):
$$
y^2=x^3+A x+B
$$
你可以在图11.1中看到这个方程

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。