相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


数学代写|离散数学作业代写discrete mathematics代考|Graph Theory

Graph theory is a practical branch of mathematics that deals with the arrangements of certain objects known as vertices (or nodes) and the relationships between them. It has been applied to practical problems such as the modelling of computer networks, determining the shortest driving route between two cities, the link structure of a website, the travelling salesman problem and the four-colour problem. ${ }^1$

Consider a map of the London underground, which is issued to users of the underground transport system in London. Then this map does not represent every feature of the city of London, as it includes only material that is relevant to the users of the London underground transport system. In this map the exact geographical location of the stations is unimportant, and the essential information is how the stations are interconnected to one another, as this allows a passenger to plan a route from one station to another. That is, the map of the London underground is essentially a model of the transport system that shows how the stations are interconnected.

The seven bridges of Königsberg ${ }^2$ (Fig. 9.1) is one of the earliest problems in graph theory. The city was set on both sides of the Pregel River in the early eighteenth century, and it consisted of two large islands that were connected to each other and the mainland by seven bridges. The problem was to find a walk through the city that would cross each bridge once and once only.

Euler showed that the problem had no solution, and his analysis helped to lay the foundations for graph theory as a discipline. This problem in graph theory is concerned with the question as to whether it is possible to travel along the edges of a graph starting from a vertex and returning to it and travelling along each edge exactly once. An Euler Path in a graph $\mathrm{G}$ is a simple path containing every edge of $\mathrm{G}$.
Euler noted, in effect, that for a walk through a graph traversing each edge exactly once depends on the degree of the nodes (i.e. the number of edges touching it). He showed that a necessary and sufficient condition for the walk is that the graph is connected and has zero or two nodes of odd degree. For the Köningberg graph, the four nodes (i.e. the land masses) have odd degree (Fig. 9.2).

A graph is a collection of objects that are interconnected in some way. The objects are typically represented by vertices (or nodes), and the interconnections between them are represented by edges (or lines). We distinguish between directed and adirected graphs, where a directed graph is mathematically equivalent to a binary relation, and an adirected (undirected) graph is equivalent to a symmetric binary relations.

数学代写|离散数学作业代写discrete mathematics代考|Undirected Graphs

An undirected graph (adirected graph) (Fig. 9.3) G is a pair of finite sets (V, E) such that $\mathrm{E}$ is a binary symmetric relation on $\mathrm{V}$. The set of vertices (or nodes) is denoted by $\mathrm{V}(\mathrm{G})$, and the set of edges is denoted by $\mathrm{E}(\mathrm{G})$.

A directed graph (Fig. 9.4) is a pair of finite sets (V, E) where E is a binary relation (that may not be symmetric) on V. A directed acylic graph (dag) is a directed graph that has no cycles. The example below is of a directed graph with three edges and four vertices.

An edge $e \in \mathrm{E}$ consists of a pair $\langle x, y>$ where $x, y$ are adjacent nodes in the graph. The degree of $x$ is the number of nodes that are adjacent to $x$. The set of edges is denoted by $E(G)$, and the set of vertices is denoted by $V(G)$.

A weighted graph is a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ together with a weighting function $w: \mathrm{E} \rightarrow \mathbb{N}$, which associates a weight with every edge in the graph. A weighting function may be employed in modelling computer networks: for example, the weight of an edge may be applied to model the bandwidth of a telecommunications link between two nodes. Another application of the weighting function is in determining the distance (or shortest path) between two nodes in the graph (where such a path exists).

For an directed graph, the weight of the edge is the same in both directions: i.e. $w\left(v_i, v_j\right)=w\left(v_j, v_i\right)$ for all edges $\left\langle v_i, v_j>\right.$ in the graph $\mathrm{G}$, whereas the weights may be different for a directed graph.

Two vertices $x, y$ are adjacent if $x y \in \mathrm{E}$, and $x$ and $y$ are said to be incident to the edge $x y$. A matrix may be employed to represent the adjacency relationship.

数学代写|离散数学作业代写discrete mathematics代考|MPCS50103

离散数学代写

数学代写|离散数学作业代写离散数学代考|图论


图论是数学的一个实用分支,它研究被称为顶点(或节点)的某些对象的排列以及它们之间的关系。它已被应用于一些实际问题,如计算机网络的建模、确定两个城市之间最短的驾驶路线、网站的链接结构、旅行推销员问题和四色问题。${ }^1$

考虑一张伦敦地铁的地图,它是发给伦敦地铁系统的用户的。因此,这张地图并不代表伦敦城市的每一个特征,因为它只包括与伦敦地下交通系统的用户相关的材料。在这张地图上,车站的确切地理位置并不重要,重要的信息是车站之间是如何相互连接的,因为这可以让乘客规划从一个车站到另一个车站的路线。也就是说,伦敦地铁地图本质上是一个交通系统的模型,展示了车站是如何相互连接的 Königsberg ${ }^2$的七座桥(图9.1)是图论中最早的问题之一。18世纪早期,这座城市坐落在普雷盖尔河的两岸,由两座大岛组成,它们通过七座桥相互连接,并与大陆相连。问题是要找到一条穿过城市的步道,每座桥只能穿过一次 欧拉表明这个问题没有解,他的分析帮助奠定了图论作为一门学科的基础。图论中的这个问题是关于是否有可能从一个顶点开始沿着图的边缘移动,然后返回到它,并沿着每条边只移动一次。图$\mathrm{G}$中的欧拉路径是包含$\mathrm{G}$的每条边的简单路径。
欧拉注意到,实际上,在图中遍历每条边仅一次取决于节点的度数(即与之接触的边的数量)。他证明了行走的一个充分必要条件是图是连通的并且有0个或2个奇数次节点。对于Köningberg图,四个节点(即陆地块)具有奇数度(图9.2) 图是以某种方式相互连接的对象的集合。对象通常由顶点(或节点)表示,它们之间的相互连接由边(或线)表示。我们区分了有向图和有向图,其中有向图在数学上等价于二进制关系,而有向(无向)图等价于对称二进制关系

数学代写|离散数学作业代写离散数学代考|无向图

无向图(有向图)(图9.3)G是一对有限集(V, E),使得$\mathrm{E}$是$\mathrm{V}$上的二元对称关系。顶点(或节点)的集合用$\mathrm{V}(\mathrm{G})$表示,边的集合用$\mathrm{E}(\mathrm{G})$表示 有向图(图9.4)是一对有限集(V, E),其中E是V上的二元关系(可能不对称)。有向酰基图(dag)是没有环的有向图。下面的例子是一个有向图,有三条边和四个顶点 边$e \in \mathrm{E}$由一对$\langle x, y>$组成,其中$x, y$是图中相邻的节点。$x$的度数是与$x$相邻的节点数。边集用$E(G)$表示,顶点集用$V(G)$表示。


加权图是一个图$\mathrm{G}=(\mathrm{V}, \mathrm{E})$加上一个加权函数$w: \mathrm{E} \rightarrow \mathbb{N}$,该函数将一个权值与图中的每条边关联起来。权重函数可用于计算机网络的建模:例如,边的权重可用于模拟两个节点之间的电信链路的带宽。权函数的另一个应用是确定图中两个节点之间的距离(或最短路径)(其中存在这样的路径)

对于有向图,边的权值在两个方向上都是相同的:例如,对于图$\mathrm{G}$中的所有边$\left\langle v_i, v_j>\right.$,边的权值都是$w\left(v_i, v_j\right)=w\left(v_j, v_i\right)$,而对于有向图,边的权值可能是不同的

如果$x y \in \mathrm{E}$,那么两个顶点$x, y$是相邻的,并且$x$和$y$被认为是$x y$边的事件。可以用一个矩阵来表示邻接关系

数学代写|离散数学作业代写discrete mathematics代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。