数学代写|凸优化作业代写Convex Optimization代考|MATH4071

相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


数学代写|凸优化作业代写Convex Optimization代考|Upper and Lower Estimates for the Pareto Front

In this section, we visualize the behavior of the function
$$
L_{\mathbf{A}}(\mathbf{w})=\min _{\mathbf{x} \in \mathbf{A}} g(\mathbf{x}, \mathbf{w})
$$
and the estimates of this function which are based on the use of (8.6) and (8.7). Two test problems are used below. The first test problem is ideal for the application of the statistical method described in Section 8.2. The second test function represents/models problems aimed by the bi-objective optimization method.

Visualization of the function $L_{\mathbf{A}}(\mathbf{w})$ corresponding to more than two objectives is difficult, and we thus assume $m=2$; that is, $\mathbf{f}(\mathbf{x})=\left(f_1(\mathbf{x}), f_7(\mathbf{x})\right)$. In this case, we set $\mathbf{w}=(w, 1-w)$ and consider the function $L_{\mathbf{A}}(\mathbf{w})=L_{\mathbf{A}}(w)$ depending on one variable only, $w \in[0,1]$. We also assume that $d=2$ and $\mathbf{x}=\left(x_1, x_2\right) \in \mathbf{A}=[0,1] \times[0,1]$.
As the first test problem, we consider (1.3) where both objectives are quadratic functions. The sets of Pareto optimal solutions and Pareto optimal decisions are presented in Figure 1.1.

The second multi-objective problem (1.6) is composed of two Shekel functions which are frequently used for testing of single-objective global optimization algorithms. The sets of Pareto optimal solutions and Pareto optimal decisions are presented in Figure 1.3.

In Figures $8.1$ and $8.2$, we show the following estimates of $L_{\mathbf{A}}(w)$, for different $w \in[0,1]:$
(a): $y_{1, n}$, the minimal order statistic corresponding to the sample $\left{y_j=g\left(\mathbf{x}j, w\right) ; j=\right.$ $1, \ldots, n}$ (b): $\widehat{\mathrm{m}}{n, k}$ constructed by the formula (8.6);
(c): $y_{1, n}-\left(y_{k, n}-y_{1, n}\right) / c_{k, 8}$, the lower end of the confidence interval (8.7).
In Figure $8.3$ we illustrate the precision of these estimates for $L_{\mathbf{S}}(w)$ where $\mathbf{S}$ is a subset of $\mathbf{A}$ defined in the capture.

The sample size $n$ is chosen to be $n=300$, the number $k$ of order statistics used is $k=4$ and $\delta=0.05$. Any increase of $n$ (as well a slight increase of $k$ ) leads to an improvement of the precision of the estimates. However, to observe any visible effect of the improvement one needs to significantly increase $n$, see [239] and especially [238] for related discussions.

For each $w$, the minimal order statistic $y_{1, n}$ is an upper bound for the value of the minimum $L_{\mathbf{A}}(w)=\min {\mathbf{x} \in \mathbf{A}} g(\mathbf{x}, w)$ so that it is not a very good estimator. Similarly, $y{1, n}-\left(y_{k, n}-y_{1, n}\right) / c_{k, 8}$, the lower end of the confidence interval (8.7), is not a good estimator of $L_{\mathbf{A}}(\mathbf{w})$ as by the definition it is an upper bound $L_{\mathbf{A}}(\mathbf{w})$ in the majority of cases. The estimator $\widehat{\mathrm{m}}{n, k}$ is always in-between the above two bounds, so that we always have $y{1, n} \leq \widehat{\mathrm{m}}{n, k} \leq y{1, n}-\left(y_{k, n}-y_{1, n}\right) / c_{k, 8}$ (this can be proved theoretically). We have found that the estimator $\widehat{\mathrm{m}}_{n, k}$ is rather precise in the chosen test problems.

数学代写|凸优化作业代写Convex Optimization代考|Branch and Probability Bound Methods

For a single-objective optimization, branch and bound optimization methods are widely known. They are frequently based on the assumption that the objective function $f(\mathbf{x})$ satisfies the Lipschitz condition; see Section 4.2. These methods consist of several iterations, each includes the three following stages:

(i) branching of the optimization set into a tree of subsets,
(ii) making decisions about the prospectiveness of the subsets for further search, and
(iii) selection of the subsets that are recognized as prospective for further branching.
To make a decision at stage (8.5) prior information about $f(\mathbf{x})$ and values of $f(\mathbf{x})$ at some points in $\mathbf{A}$ are used, deterministic lower bounds (often called “underestimates”) for the infimum of $f(\mathbf{x})$ on the subsets of $\mathbf{A}$ are constructed, and those subsets $\mathbf{S} \subset \mathbf{A}$ are rejected for which the lower bound for $\mathrm{m}S=\inf {\mathbf{x} \in \mathbf{S}} f(\mathbf{x})$ does not exceed an upper bound $\hat{f}^$ for $\mathbf{m}=\min {\mathbf{x} \in \mathbf{A}} f(\mathbf{x})$. (The minimum among evaluated values of $f(\mathbf{x})$ in $\mathbf{A}$ is a natural upper bound $\hat{f}^$ for $\mathrm{m}\iota$ )

The branch and bound techniques are among the best deterministic techniques developed for single-objective global optimization. These techniques are naturally extensible to multi-objective case as shown in Chapter 5 . In the case of singleobjective optimization, deterministic branch and bound techniques have been generalized in [238] and [237] to the case where the bounds are stochastic rather than deterministic, and are constructed on the base of statistical inferences about the minimal value of the objective function. The corresponding methods are called branch and probability bound methods. In these methods, statistical procedures for testing the hypothesis $H_0: M_S \leq \hat{f}^*$ are applied to make a decision concerning the prospectiveness of a set $\mathbf{S} \subset \mathbf{A}$ at stage (ii). Rejection of the hypothesis $H_0$ corresponds to the decision that the global minimum $\mathrm{m}=\min _{\mathbf{x} \in \mathrm{A}} f(\mathbf{x})$ cannot be reached in $\mathbf{S}$. Unlike the deterministic decision rules such rejection may be false. This may result that the global maximizer is lost. However, an asymptotic level for the probability of the false rejection can be controlled and it will be fixed.

数学代写|凸优化作业代写Convex Optimization代考|MATH4071

数学代写|凸优化作业代写凸优化代考| Pareto Front的上下估计


在本节中,我们可视化函数
$$
L_{\mathbf{A}}(\mathbf{w})=\min _{\mathbf{x} \in \mathbf{A}} g(\mathbf{x}, \mathbf{w})
$$
的行为,以及基于(8.6)和(8.7)的该函数的估计。下面使用两个测试问题。第一个测试问题非常适合应用第8.2节中描述的统计方法。第二个测试函数表示/建模双目标优化方法所针对的问题


函数$L_{\mathbf{A}}(\mathbf{w})$对应于两个以上的目标的可视化是困难的,因此我们假设$m=2$;网址是$\mathbf{f}(\mathbf{x})=\left(f_1(\mathbf{x}), f_7(\mathbf{x})\right)$。在本例中,我们设置$\mathbf{w}=(w, 1-w)$并考虑仅依赖于一个变量$w \in[0,1]$的函数$L_{\mathbf{A}}(\mathbf{w})=L_{\mathbf{A}}(w)$。我们还假设$d=2$和$\mathbf{x}=\left(x_1, x_2\right) \in \mathbf{A}=[0,1] \times[0,1]$ .
作为第一个测试问题,我们考虑(1.3),其中两个目标都是二次函数。帕累托最优解集和帕累托最优决策集如图1.1所示


第二个多目标问题(1.6)由两个经常用于测试单目标全局优化算法的谢克尔函数组成。帕累托最优解集和帕累托最优决策集如图1.3所示


在图$8.1$和$8.2$中,我们显示了$L_{\mathbf{A}}(w)$的以下估计,对于不同的$w \in[0,1]:$
(a): $y_{1, n}$,对应于样本$\left{y_j=g\left(\mathbf{x}j, w\right) ; j=\right.$$1, \ldots, n}$ (b): $\widehat{\mathrm{m}}{n, k}$的最小序统计量,由公式(8.6)构造;
(c): $y_{1, n}-\left(y_{k, n}-y_{1, n}\right) / c_{k, 8}$,置信区间(8.7)的下端。
在图$8.3$中,我们说明了$L_{\mathbf{S}}(w)$的这些估计的精度,其中$\mathbf{S}$是捕获中定义的$\mathbf{A}$的子集

选择样本容量$n$为$n=300$,使用的订单统计数$k$为$k=4$和$\delta=0.05$。$n$的任何增加(以及$k$的轻微增加)都会导致估计精度的提高。然而,要观察任何明显的改进效果,就需要显著增加$n$,参见[239],特别是[238]进行相关讨论。


对于每个$w$,最小阶统计量$y_{1, n}$是最小值$L_{\mathbf{A}}(w)=\min {\mathbf{x} \in \mathbf{A}} g(\mathbf{x}, w)$的上界,因此它不是一个很好的估计量。类似地,$y{1, n}-\left(y_{k, n}-y_{1, n}\right) / c_{k, 8}$,置信区间(8.7)的低端,不是$L_{\mathbf{A}}(\mathbf{w})$的一个很好的估计值,因为根据定义,它在大多数情况下是$L_{\mathbf{A}}(\mathbf{w})$的上限。估计量$\widehat{\mathrm{m}}{n, k}$总是在上面两个边界之间,所以我们总是有$y{1, n} \leq \widehat{\mathrm{m}}{n, k} \leq y{1, n}-\left(y_{k, n}-y_{1, n}\right) / c_{k, 8}$(这可以从理论上证明)。我们发现,在所选的测试问题中,估计量$\widehat{\mathrm{m}}_{n, k}$是相当精确的

数学代写|凸优化作业代写凸优化代考|分支和概率绑定方法

.


对于单目标优化,分支和定界优化方法是众所周知的。它们通常基于这样的假设:目标函数$f(\mathbf{x})$满足Lipschitz条件;见4.2节。这些方法由几个迭代组成,每个迭代包括以下三个阶段

(i)将优化集分支成一棵子集树,
(ii)对进一步搜索的子集的前景做出决定,
(iii)选择被认为有前景进行进一步分支的子集。
在(8.5)阶段作出决定 $f(\mathbf{x})$ 和价值观 $f(\mathbf{x})$ 在某些时候 $\mathbf{A}$ 的极值是否使用确定性的下界(通常称为“低估”) $f(\mathbf{x})$ 的子集上 $\mathbf{A}$ 是构造出来的,那些子集呢 $\mathbf{S} \subset \mathbf{A}$ 被拒绝的下界是为了什么 $\mathrm{m}S=\inf {\mathbf{x} \in \mathbf{S}} f(\mathbf{x})$ 是否超过上限 $\hat{f}^$ 为 $\mathbf{m}=\min {\mathbf{x} \in \mathbf{A}} f(\mathbf{x})$。的评估值中的最小值 $f(\mathbf{x})$ 在 $\mathbf{A}$ 这是一个自然的上限吗 $\hat{f}^$ 为 $\mathrm{m}\iota$ )


分支和定界技术是为单目标全局优化开发的最好的确定性技术之一。这些技术可以很自然地扩展到第5章所示的多目标情况。在单目标优化的情况下,确定性分支和定界技术在[238]和[237]中被推广到边界是随机的而不是确定性的情况下,并且是基于关于目标函数最小值的统计推断构建的。相应的方法称为分支和概率定界方法。在这些方法中,应用检验假设$H_0: M_S \leq \hat{f}^*$的统计程序,对阶段(ii)中集合$\mathbf{S} \subset \mathbf{A}$的前瞻性作出决定。拒绝假设$H_0$对应于$\mathbf{S}$中不能达到全局最小值$\mathrm{m}=\min _{\mathbf{x} \in \mathrm{A}} f(\mathbf{x})$的决定。与确定性决策规则不同,这种拒绝可能是错误的。这可能导致全局最大化器丢失。然而,错误拒绝概率的渐近水平是可以控制的,并且是固定的

数学代写|凸优化作业代写Convex Optimization代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Scroll to Top