相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
物理代写|流体力学代写Fluid Mechanics代考|Helmholtz Theorems
Research on vortex flow has been initiated by the fundamental paper [36] of H.L.F. Helmholtz (1821-1894), a physicist and a professor of physiology and anatomy at the University of Königsberg, Bonn, Heidelberg and Berlin. In his paper, Helmholtz established his three theorems of vortex motion. Assuming incompressible frictionless fluids subjected to flow forces defined by a potential, Helmholtz [36] published a paper about the vortex motions in which he stated his vortex theorems. These theorems are translated from German and appear in an excellent textbook by Prandtl and Tietiens [31]. They reflect the quintessence of the vortex flow motion treated in Helmholtz original work. Before starting with the discussion of Helmholtz theorems, it is helpful to become familiar with the nomenclature sketched in Fig. 6.31.
A vortex line, Fig. 6.31a is a line tangent to the rotation vector $\nabla \times V$. The vortex lines may form a vortex tube, Fig. 6.3lb. Reducing the cross sections of a vortex tube to an infinitely small size, we obtain a vortex filament. Thus, a vortex filament is essentially a vortex tube with an infinitely small cross section but a finite value of circulation. This particular configuration allows one to apply the Stoke’s theorem Eq. (6.147) without integrating the rotation vector
$$
\Gamma=(\nabla \times V) \cdot n d S .
$$
Since the unit vector $\boldsymbol{n}$ is parallel to the rotation vector $\nabla \times \boldsymbol{V}$, we may re-arrange Eq. $(6.167)$
$$
\nabla \times V=n \frac{\Gamma}{d S} .
$$
Since $d s$ is, per definition, infinitely small and $\Gamma$ has a finite value, the rotation vector $\nabla \times V$ must be infinitely large, indicating that the vortex filaments represent a singularity. This and many other types of singularities are used for dealing with more complicated issues particularly in aerodynamics.
Ignoring the friction forces and assuming that there exists a potential acting on fluid particles, Helmholtz formulated in his original paper [36], three theorems: The first theorem states that no fluid particle can have a rotation if it did not originally rotate. This theorem reflects the physical content of the differential part of Eq. (6.166). The second theorem states that the fluid particles, which at any time are part of a vortex line, always belong to that same vortex line. This theorem is the consequence of the integral part of Eq. (6.166), stating that the circulation remains constant. The third theorem states that the product of the cross section area and angular velocity of an infinitely thin vortex filament remains constant over the whole length of the filament and keeps the same value even when the vortex moves. It further states that the vortex filament must, therefore, be either closed curves or end on the boundaries of the fluid.
物理代写|流体力学代写Fluid Mechanics代考|Induced Velocity Field, Law of Bio-Savart
We consider now an isolated vortex filament with the strength $\Gamma$ imbedded in an inviscid irrotational flow environment, as shown in Fig. 6.33.
In a distance $r$ from the point $A$, a differential element $d \xi$ of the vortex filament at the point $B$, induces a differential velocity vector field $d \boldsymbol{V}$. The velocity vector is perpendicular to the plane spanned by the normal unit vector $\boldsymbol{n}$ and the unit vector $\boldsymbol{e}$ in the $\boldsymbol{r}$-direction. The unit vector $\boldsymbol{n}$ is perpendicular to the infinitesimal cross section $d S$, whereas the unit vector $\boldsymbol{e}$ points from the center point of the element $A$ to the position $B$, where the velocity $d V$ is being induced. The relationship describing the velocity field is analogous to the one discovered by Bio and Savart through electrodynamic experiments. It describes the magnetic field induced by a current through a conducting wire. In an aerodynamic context, the conducting wire corresponds to the vortex filament, its current corresponds to the vortex strength $\Gamma$ and the induced magnetic field corresponds to the induced velocity field.
To present the derivation, first we provide the mathematical tool essential to arriving at the Bio-Savart law. Let us decompose an arbitrary vector point function $V$ into an irrotational part that can be expressed in terms of the gradient of a potential and a rotational or solenoidal part
$$
\boldsymbol{V}=\nabla \Phi+\nabla \times \boldsymbol{U}
$$
with $\Phi$ as a scalar potential and $\nabla \times \boldsymbol{U}$ as the solenoidal part of Eq. (6.186). Taking the curl of Eq. (6.186) gives
$$
\nabla \times \boldsymbol{V}=\nabla \times(\nabla \Phi)+\nabla \times(\nabla \times \boldsymbol{U})=\nabla \times(\nabla \times \boldsymbol{U})
$$
The first term on the right-hand side of Eq. (6.187) is the curl of the gradient of the scalar field $\Phi$ that identically vanishes. The divergence of Eq. (6.186) delivers
$$
\nabla \cdot \boldsymbol{V}=\Delta \Phi+\nabla \cdot(\nabla \times \boldsymbol{U})=\nabla^2 \Phi=\Delta \Phi
$$ with $\nabla \cdot \nabla \Phi=\Delta \Phi$ and $\nabla \cdot(\nabla \times \boldsymbol{U}) \equiv 0$. Equation $(6.188)$ is an inhomogeneous partial differential equation called Poisson’s equation. What makes the Poisson’s equation (6.188) a special case where $\Delta \Phi=0$, is the Laplace equation we treated in the preceding sections. Using the vector identity for $\nabla \times(\nabla \times \boldsymbol{U})=\nabla(\nabla \cdot \boldsymbol{U})-$ $\Delta \boldsymbol{U}, \mathrm{Eq} .(6.187)$ reads
$$
\nabla \times \boldsymbol{V}=\nabla(\nabla \cdot \boldsymbol{U})-\Delta \boldsymbol{U}
$$

物理代写|流体力学代写流体力学代考|Helmholtz定理
. . Helmholtz定理
关于旋涡流动的研究是由H.L.F. Helmholtz(1821-1894)的基础论文[36]发起的。Helmholtz是一位物理学家,也是Königsberg、波恩、海德堡和柏林大学的生理学和解剖学教授。在他的论文中,亥姆霍兹建立了涡旋运动的三个定理。假设不可压缩无摩擦流体受到由势定义的流动力,Helmholtz[36]发表了一篇关于旋涡运动的论文,在其中他阐述了他的旋涡定理。这些定理是从德语翻译过来的,出现在Prandtl和Tietiens的一本优秀教科书[31]中。它们反映了亥姆霍兹原著中所处理的旋涡流动运动的精髓。在开始讨论亥姆霍兹定理之前,熟悉图6.31中描绘的命名法是有帮助的
图6.31a是一条与旋转矢量$\nabla \times V$相切的线。旋涡线可以形成旋涡管,如图6.3lb。将涡旋管的横截面缩小到无限小的尺寸,就得到了涡旋灯丝。因此,涡旋灯丝本质上是一个具有无限小截面但循环有限值的涡旋管。这种特殊的配置允许应用斯托克定理Eq.(6.147),而无需对旋转向量
$$
\Gamma=(\nabla \times V) \cdot n d S .
$$ 积分
由于单位向量$\boldsymbol{n}$平行于旋转向量$\nabla \times \boldsymbol{V}$,我们可以重新排列方程式$(6.167)$
$$
\nabla \times V=n \frac{\Gamma}{d S} .
$$
由于$d s$根据定义是无限小的,而$\Gamma$有一个有限的值,旋转向量$\nabla \times V$必须是无限大的,这表明涡旋丝代表一个奇点。这种奇点和许多其他类型的奇点被用来处理更复杂的问题,特别是在空气动力学中
忽略摩擦力,假设存在作用在流体粒子上的势能,Helmholtz在他的原始论文[36]中提出了三个定理:第一个定理指出,如果流体粒子本来没有旋转,那么它就不可能旋转。这个定理反映了式(6.166)中微分部分的物理内容。第二个定理指出,流体粒子,在任何时候都是一条涡线的一部分,总是属于同一条涡线。该定理是式(6.166)积分部分的推导,说明循环保持不变。第三个定理指出,无限细的旋涡长丝的横截面积和角速度的乘积在长丝的整个长度上保持恒定,并且即使在旋涡移动时也保持相同的值。因此,涡丝必须是闭合曲线或终止于流体边界上
物理代写|流体力学代写流体力学代考|诱导速度场,生物-萨伐尔定律
我们现在考虑一个强度为$\Gamma$的孤立涡丝嵌入无粘无旋流动环境中,如图6.33所示。
在距离$A$点$r$处,位于$B$点的涡旋丝的微分元$d \xi$,诱发了一个微分速度向量场$d \boldsymbol{V}$。速度向量垂直于由单位向量$\boldsymbol{n}$和单位向量$\boldsymbol{e}$在$\boldsymbol{r}$方向张成的平面。单位向量$\boldsymbol{n}$垂直于无穷小的截面$d S$,而单位向量$\boldsymbol{e}$从元素$A$的中点指向位置$B$,在那里速度$d V$被诱导。描述速度场的关系类似于Bio和Savart通过电动力学实验发现的关系。它描述通过导线的电流所引起的磁场。在气动环境下,导线对应旋涡丝,其电流对应旋涡强度$\Gamma$,感应磁场对应感应速度场
为了给出推导过程,我们首先提供得到比奥-萨伐尔定律所必需的数学工具。让我们把一个任意向量点函数$V$分解成一个无转动部分,这个无转动部分可以用势和旋转部分或螺线部分
$$
\boldsymbol{V}=\nabla \Phi+\nabla \times \boldsymbol{U}
$$
的梯度表示,其中$\Phi$作为标量势,$\nabla \times \boldsymbol{U}$作为式(6.186)的螺线部分。取式(6.186)的旋度,得到
$$
\nabla \times \boldsymbol{V}=\nabla \times(\nabla \Phi)+\nabla \times(\nabla \times \boldsymbol{U})=\nabla \times(\nabla \times \boldsymbol{U})
$$
式(6.187)右边的第一项是相同消失的标量场$\Phi$的梯度的旋度。Eq.(6.186)的发散产生
$$
\nabla \cdot \boldsymbol{V}=\Delta \Phi+\nabla \cdot(\nabla \times \boldsymbol{U})=\nabla^2 \Phi=\Delta \Phi
$$与$\nabla \cdot \nabla \Phi=\Delta \Phi$和$\nabla \cdot(\nabla \times \boldsymbol{U}) \equiv 0$。方程$(6.188)$是一个叫做泊松方程的非齐次偏微分方程。使泊松方程(6.188)成为$\Delta \Phi=0$的特例的是我们在前面几节中处理过的拉普拉斯方程。使用向量标识$\nabla \times(\nabla \times \boldsymbol{U})=\nabla(\nabla \cdot \boldsymbol{U})-$$\Delta \boldsymbol{U}, \mathrm{Eq} .(6.187)$读取
$$
\nabla \times \boldsymbol{V}=\nabla(\nabla \cdot \boldsymbol{U})-\Delta \boldsymbol{U}
$$

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。