相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
物理代写|高能物理代写High Energy Physics代考|Basic Facts and Observations
As already pointed out, the identification of lines in stellar spectra showed that stars were objects of the same type as the Sun. The presence of known chemical elements ( $\mathrm{H}, \mathrm{C}, \mathrm{O}$, etc.) and the study of spectral lines gives information about the outer stellar region, while its inner composition remains undetermined because the radiation does not carry information from the inner regions. But there are other ways to study stellar structure, at least indirectly. For example, it is relatively easy to determine how much energy is flowing from a star per unit frequency interval. In order to do this, it is enough to use filters that let through photons in some chosen range, and then count how many of them are in each wavelength interval. The total energy is easily calculated with the aid of the relation $E=h v$. In general, and for “normal” stars (the case of white dwarfs and others will be treated later), we find that there is a band where the number of photons reaches a maximum, and that the spectrum has approximately the shape of a black body spectrum. The black body, discussed by G. Kirchhoff and others at the beginning of the 20th century, is an idealization that applies to a perfect absorber/emitter which presents the distribution of intensities as a function of frequency shown in Fig. 4.2.
The colors of the stars correspond to the maximum of the distribution, since the photons with this wavelength are the most numerous, provided that the star complies with the black body idealization. The value of $\lambda_{\max }$ moves to lower wavelength values as the temperature increases. The lower the value of $\lambda_{\max }$ (i.e., the higher the frequency $v_{\max }$ ), the higher the temperature. Thus, the photons are said to be “harder” (i.e., more energetic) for distributions where the effective temperature is higher. If we restrict ourselves to the range marked $V$ (visible) in Fig. 4.2, the stars must present colors from red to blue, corresponding to temperatures between approximately 3800 and $10000 \mathrm{~K}$.
The next issue is the total energy emitted by the star, since we now have an idea of how the photons are distributed. The black body emission problem remained unsolved until the first years of the 20th century, as discussed in Chap. 2. In fact, the functional shape of the curves in Fig. $4.2$ corresponds to the expression (2.3), a consequence of the discrete nature of light. Note, however, that the total flux that emerges from a black body studied by G. Kirchhoff and others, i.e., the energy emitted per unit time and per unit area, has a very simple form: the result is proportional to the temperature to the fourth power, multiplied by a universal constant $\sigma$, and is completely independent of the composition of the body:
$$
F=\sigma T^4
$$
物理代写|高能物理代写High Energy Physics代考|Physical Description of Stellar Structure
The previous observation regarding the state of equilibrium and the fact that it can sustain stars for many millions of years leads to the question of the kind of equilibrium we are talking about. If we consider the case of a mass held up by a spring on the surface of the Earth (Fig. $4.4$ right), the mechanical balance of the system is guaranteed by the condition $\mathbf{F}{\text {grav }}=\mathbf{F}{\text {spring. But if we imagine now that the mass }}$ (in the form of a small cube) is an element of a fluid, the equivalent expression $\mathbf{F}{\text {grav }}=\mathbf{F}{\text {press }}$ points to two important considerations: first, the gravitational field is not “external” as in the case of the little cube on the Earth’s surface, but rather it is the very distribution of fluid that produces the gravitation, whence a star is often called a self-gravitating fluid; and second, the whole fluid distribution is also responsible for the force that sustains the “little cube” fluid element, by producing a pressure that balances the gravitation.
When dealing with a self-gravitating fluid, the mechanical balance of forces is called a hydrostatic balance. Free of any other forces, it is well known that the fluid will adopt a spherical form (to minimize its free energy). Thus, the hydrostatic equilibrium equation can be obtained by considering concentric shells of thickness $\mathrm{d} r$, where there is a pressure difference $P(r)-P(r+\mathrm{d} r)$ between the base and the top of any given shell. On the other hand, the shell is subject to the gravitational force that pulls it towards the center of the star (Fig. 4.5).
Now we can use calculus to express the forces in a simple way: the force produced by the pressure difference is $$
P(r)-P(r+\mathrm{d} r) \approx-\frac{\partial P}{\partial r} \mathrm{~d} r,
$$
and the gravitational pull is
$$
\mathbf{F}{\text {grav }}=-g(r) \rho(r) \mathrm{d} r=-\rho \frac{G M(r)}{r^2} \mathrm{~d} r, $$ where it is clear that the local acceleration due to gravitation increases as one moves outwards nwing to the accumulation of shells within, and should be calculated using the same density $\rho$ of the fluid. The condition $\mathbf{F}{\text {grav }}=\mathbf{F}_{\text {press }}$ leads immediately to
$$
\frac{\mathrm{d} P}{\mathrm{~d} r}=-\rho \frac{G M(r) \rho(r)}{r^2}
$$

物理代写|高能物理代写高能物理代考|基本事实和观察
正如已经指出的,恒星光谱中线条的识别表明,恒星是与太阳属于同一类型的物体。已知化学元素的存在($\mathrm{H}, \mathrm{C}, \mathrm{O}$等)和对光谱线的研究提供了关于恒星外层区域的信息,而其内部成分仍然不确定,因为辐射不携带来自内部区域的信息。但是还有其他的方法来研究恒星结构,至少是间接的。例如,相对容易确定每单位频率间隔有多少能量从一颗恒星流出。为了做到这一点,只需要使用过滤器,在选定的范围内让光子通过,然后计算每个波长区间内有多少光子。总能量很容易计算,借助于关系式$E=h v$。一般来说,对于“正常”恒星(白矮星和其他恒星的情况将在后面讨论),我们发现存在一个光子数量达到最大值的波段,该光谱的形状近似于黑体光谱。G. Kirchhoff等人在20世纪初讨论的黑体,是适用于完美吸收体/发射体的一种理想化形式,它将强度分布表示为频率的函数,如图4.2所示
恒星的颜色对应于分布的最大值,因为这个波长的光子是最多的,前提是恒星符合黑体理想化。随着温度的升高,$\lambda_{\max }$的值向较低的波长值移动。$\lambda_{\max }$的值越低(即频率$v_{\max }$越高),温度越高。因此,对于有效温度较高的分布,光子被称为“更硬”(即更有能量)。如果我们将自己限制在图4.2中标记为$V$(可见)的范围内,那么恒星的颜色必须从红色到蓝色,对应的温度大约在3800到$10000 \mathrm{~K}$之间
下一个问题是恒星发出的总能量,因为我们现在已经知道了光子是如何分布的。直到20世纪的头几年,黑体发射问题仍未解决,如第二章所述。事实上,图$4.2$中曲线的函数形状对应于表达式(2.3),这是光的离散性质的结果。但是,请注意,G.基尔霍夫等人研究的黑体产生的总通量,即每单位时间和每单位面积发出的能量,有一个非常简单的形式:结果与温度的四次方成正比,乘以一个通用常数$\sigma$,完全与黑体的组成无关:
$$
F=\sigma T^4
$$
物理代写|高能物理代写高能物理代考|恒星结构物理描述
先前对平衡状态的观察,以及它可以维持恒星数百万年的事实,导致了我们正在讨论的那种平衡的问题。如果我们考虑一个物体被地球表面的弹簧支撑的情况(图右$4.4$),系统的机械平衡由条件$\mathbf{F}{\text {grav }}=\mathbf{F}{\text {spring. But if we imagine now that the mass }}$(小立方体的形式)是流体的一个元素保证,等效表达式$\mathbf{F}{\text {grav }}=\mathbf{F}{\text {press }}$指出两个重要的考虑:首先,引力场不像地球表面的小立方体那样是“外部的”,而是流体的分布本身产生了引力,因此恒星常被称为自引力流体;第二,整个流体分布也负责维持“小立方体”流体元素的力,通过产生平衡重力的压力
当处理自引力流体时,力的机械平衡被称为流体静力平衡。在没有任何其他力的情况下,众所周知,流体将采用球形形式(以使其自由能最小化)。因此,流体静力平衡方程可以考虑厚度为$\mathrm{d} r$的同心壳,其中任何给定壳的底部和顶部之间有$P(r)-P(r+\mathrm{d} r)$的压差。另一方面,壳受到引力的作用,将其拉向恒星的中心(图4.5)
现在我们可以用微积分简单地表示这些力:压差产生的力是$$
P(r)-P(r+\mathrm{d} r) \approx-\frac{\partial P}{\partial r} \mathrm{~d} r,
$$
,重力拉力是
$$
\mathbf{F}{\text {grav }}=-g(r) \rho(r) \mathrm{d} r=-\rho \frac{G M(r)}{r^2} \mathrm{~d} r, $$,很明显,由于重力引起的局部加速度随着向外移动而增加,以内部堆积的贝壳为中心,应该使用相同的流体密度$\rho$来计算。条件$\mathbf{F}{\text {grav }}=\mathbf{F}_{\text {press }}$立即导致
$$
\frac{\mathrm{d} P}{\mathrm{~d} r}=-\rho \frac{G M(r) \rho(r)}{r^2}
$$

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。