统计代写|贝叶斯网络代写Bayesian network代考|BAYES-2022

相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


统计代写|贝叶斯网络代写Bayesian network代考|Calculation of Performance Parameters of SIS

Probability of failure on demand (PFD), average probability of failure on demand ( $\mathrm{PFD}{\text {avg }}$ ), probability of failing safely (PFS), and average probability of failing safely ( $\mathrm{PFS}{\text {avg }}$ ) are main target failure measures of SISs operating in a low-demand mode. PFD is the probability that a SIS fails to perform its intended safety function during a potentially dangerous condition, which is called a dangerous failure. IEC 61508 focuses only on PFD and ignores the issues about system safe failure PFS [41]. The current work studies both dangerous failure and safe failure using the proposed MSBN method. PFD $_{\text {avg }}$ and PFS $_{\text {avg }}$ are the average values of PFD and PFS in a period of time, respectively, and the expressions are obtained by means of the compound trapezium rule as follows:
$$
\mathrm{PFD}{\mathrm{avg}}=\frac{1}{T} \int_0^T \operatorname{PFD}(t) \mathrm{d} t=\lim {N_{\Delta i} \rightarrow \infty} \frac{1}{N_{\mathrm{TI}} \cdot \mathrm{TI}} \sum_{j=1}^{N_{\mathrm{TI}}} \sum_{i=1}^{N_{\Delta t}} \frac{\operatorname{PFD}\left(t_i^j\right)+\operatorname{PFD}\left(t_{i+1}^j\right)}{2}
$$

$$
\mathrm{PFS}{\mathrm{avg}}=\frac{1}{T} \int_0^T \operatorname{PFS}(t) \mathrm{d} t=\lim {N_{\Delta t} \rightarrow \infty} \frac{1}{N_{\mathrm{TI}} \cdot \mathrm{TI}} \sum_{j=1}^{N_{\mathrm{TI}}} \sum_{i=1}^{N_{\Delta t}} \frac{\operatorname{PFS}\left(t_i^j\right)+\operatorname{PFS}\left(t_{i+1}^j\right)}{2}
$$
where $t_i^j$ is the time of the $i$ th time slice in the jth proof test interval TI. $N_{\mathrm{TI}}$ is the combination of time interval TI in total time $T$, and $T$ should be divisible by TI. $N_{\Delta t}$ is the number of small time intervals $\Delta t$ in time interval TI, and TI should be divisible by $\Delta t$. Therefore, the number of time slices for MSBNs in a time interval TI should be $N_{\Delta t}$ plus one.

The most important measure of safety system performance, SIL, can be determined in terms of average probability of a dangerous failure on demand of the safety function [4]. Four discrete integrity levels are associated with SIL: SIL 1, SIL 2, SIL 3, and SIL 4. Higher SIL level means the associated safety level is also higher; consequently, the probability that a system will fail to perform properly is lower.

统计代写|贝叶斯网络代写Bayesian network代考|Effects of Common Cause Weight on the Model Precision

To identify the effects of common cause weight $w$ on the model precision, the following parameters are provided, including failure rate of a single channel, $\lambda=2.0 \times$ $10^{-6} \mathrm{~h}^{-1}$, total time, $T=4038 \mathrm{~h}$, safe failure fraction (SFF), $R_{\mathrm{S}}=0.5$, self-diagnostic coverage for safe (dangerous) failure, $C_{\mathrm{S}}\left(C_{\mathrm{D}}\right)=0.9$, undetected common cause failure fraction, $\beta=0.02$, detected common cause failure fraction, $\beta_{\mathrm{D}}=0.02$, mean time to repair, MTTR $=8 \mathrm{~h}$, mean time to system restoration, MTSR $=24 \mathrm{~h}$, and number of time slices, $N=4097$. When the common cause weight $w$ is $0,0.2,0.4$, $0.6,0.8$, and 1, the PFD, PFS, PFD avg $^{\text {PFS }}$ avg for 2002D and 2003 architectures are plotted, as provided in Fig. 7. As can be seen from the three-dimensional figures, PFD and PFS almost have no change with the increase of common cause weight $w$. As time $t$ increases, PFD and PFS also increase. The two-dimensional figures show that PFD $_{\text {avg }}$ and PFS $_{\text {avg }}$ have little change despite the increase of common cause weight $w$. Above all, common cause weight has little effects on the four target failure measures.

To identify the effects of imperfect proof test and repair on the model precision, the following parameters are provided, including failure rate of a single channel, $\lambda=$ $2.0 \times 10^{-6} \mathrm{~h}^{-1}$, total time, $T=8760 \mathrm{~h}$, safe failure fraction $(\mathrm{SFF}), R_{\mathrm{S}}=0.5$, selfdiagnostic coverage for safe (dangerous) failure, $C_{\mathrm{S}}\left(C_{\mathrm{D}}\right)=0.9$, undetected common cause failure fraction, $\beta=0.02$, detected common cause failure fraction, $\beta_{\mathrm{D}}=0.02$, mean time to repair, MTTR $=8 \mathrm{~h}$, mean time to system restoration, MTSR $=24 \mathrm{~h}$, and number of time slices, $N=4097$. The values of eight variables, namely $\zeta, \delta$, $\theta, \sigma, \alpha, \varepsilon, \mu$, and $\gamma$, reflect the degree of imperfect proof test and repair, and the difference in performance of SISs after the proof test. However, the eight variables have many combinations; thus, researching all of the combinations is rarely practical. Four typical combinations of variables, A, B, C, and D, are researched. The PFD, PFS, PFD $_{\text {avg }}$, PFS $_{\text {avg }}$ for $2002 \mathrm{D}$ and 2003 architectures are plotted, as provided in Fig. 8. The variables in group A represent that the proof test coverage is $100 \%$, and the repair in proof test phase is perfect. The variables in group B represent that the proof test coverage is $100 \%$, and no repair is in proof test phase. The variables in proof test is repaired perfectly; nevertheless, the detected failure by self-diagnosis proof test is repaired perfectly; nevertheless, the detected failure by self-diagnosis remains. The variables in group D represent that the proof test coverage is 0 , and the and $P F S_{\text {avg }}$ for group A are the best, whereas the curves for group $D$ are the worst, for group B and $\mathrm{C}$ are in between best and worst. The results agree with the practical engineering situation.

统计代写|贝叶斯网络代写Bayesian network代考|BAYES-2022

统计代写|贝叶斯网络代写贝叶斯网络代考| SIS的性能参数计算

按需故障概率(PFD)、按需故障平均概率($\mathrm{PFD}{\text {avg }}$)、安全故障概率(PFS)和安全故障平均概率($\mathrm{PFS}{\text {avg }}$)是SISs在低需求模式下运行的主要目标故障度量。PFD是SIS在潜在危险条件下未能执行其预期安全功能的概率,这被称为危险故障。IEC 61508只关注PFD,忽略了关于系统安全故障PFS[41]的问题。目前的工作使用所提出的MSBN方法同时研究了危险失效和安全失效。PFD $_{\text {avg }}$和PFS $_{\text {avg }}$分别为PFD和PFS在一段时间内的平均值,利用复合梯形规则得到表达式:
$$
\mathrm{PFD}{\mathrm{avg}}=\frac{1}{T} \int_0^T \operatorname{PFD}(t) \mathrm{d} t=\lim {N_{\Delta i} \rightarrow \infty} \frac{1}{N_{\mathrm{TI}} \cdot \mathrm{TI}} \sum_{j=1}^{N_{\mathrm{TI}}} \sum_{i=1}^{N_{\Delta t}} \frac{\operatorname{PFD}\left(t_i^j\right)+\operatorname{PFD}\left(t_{i+1}^j\right)}{2}
$$

$$
\mathrm{PFS}{\mathrm{avg}}=\frac{1}{T} \int_0^T \operatorname{PFS}(t) \mathrm{d} t=\lim {N_{\Delta t} \rightarrow \infty} \frac{1}{N_{\mathrm{TI}} \cdot \mathrm{TI}} \sum_{j=1}^{N_{\mathrm{TI}}} \sum_{i=1}^{N_{\Delta t}} \frac{\operatorname{PFS}\left(t_i^j\right)+\operatorname{PFS}\left(t_{i+1}^j\right)}{2}
$$
其中$t_i^j$是第j个证明测试区间TI中第$i$个时间片的时间。$N_{\mathrm{TI}}$是总时间$T$中的时间间隔TI的组合,$T$应该能被TI整除。$N_{\Delta t}$是时间间隔TI中的小时间间隔$\Delta t$的数量,TI应该能被$\Delta t$整除。因此,在TI时间间隔内msbn的时间段数应为$N_{\Delta t}$ + 1。


衡量安全系统性能的最重要指标SIL可以根据安全函数[4]要求的危险故障的平均概率来确定。四个离散完整性级别与SIL相关联:SIL 1、SIL 2、SIL 3和SIL 4。SIL水平越高,意味着相关的安全水平也越高;因此,系统无法正常执行的概率较低

统计代写|贝叶斯网络代写贝叶斯网络代考|共因权重对模型精度的影响


为了识别共因权重$w$对模型精度的影响,提供了以下参数,包括单通道故障率$\lambda=2.0 \times$$10^{-6} \mathrm{~h}^{-1}$,总时间,$T=4038 \mathrm{~h}$,安全故障分数(SFF), $R_{\mathrm{S}}=0.5$,安全(危险)故障自诊断覆盖率,$C_{\mathrm{S}}\left(C_{\mathrm{D}}\right)=0.9$,未检测共因故障分数,$\beta=0.02$,检测共因故障分数,$\beta_{\mathrm{D}}=0.02$,平均修复时间,MTTR $=8 \mathrm{~h}$,平均系统恢复时间,MTSR $=24 \mathrm{~h}$,以及时间片数量,$N=4097$。当共同原因权重$w$为$0,0.2,0.4$, $0.6,0.8$和1时,绘制2002D和2003体系结构的PFD, PFS, PFD avg $^{\text {PFS }}$ avg,如图7所示。从三维图中可以看出,随着共因权重的增加,PFD和PFS几乎没有变化$w$。随着时间$t$的增加,PFD和PFS也会增加。二维图显示,PFD $_{\text {avg }}$和PFS $_{\text {avg }}$在共因权重$w$增加的情况下变化不大。总之,共因权重对四个目标失效度量的影响很小


为了确定不完全证明测试和修复对模型精度的影响,提供了以下参数,包括单个通道的故障率$\lambda=$$2.0 \times 10^{-6} \mathrm{~h}^{-1}$,总时间$T=8760 \mathrm{~h}$,安全故障分数$(\mathrm{SFF}), R_{\mathrm{S}}=0.5$,安全(危险)故障的自诊断覆盖率,$C_{\mathrm{S}}\left(C_{\mathrm{D}}\right)=0.9$,未检测到的共因故障分数,$\beta=0.02$,检测到的共因故障分数,$\beta_{\mathrm{D}}=0.02$,平均修复时间,MTTR $=8 \mathrm{~h}$,系统恢复平均时间,MTSR $=24 \mathrm{~h}$,时间片数量$N=4097$。其中$\zeta, \delta$、$\theta, \sigma, \alpha, \varepsilon, \mu$、$\gamma$八个变量的值分别反映了证明测试和修复的不完善程度,以及证明测试后SISs的性能差异。然而,这八个变量有很多组合;因此,研究所有的组合很少是实际的。研究了四种典型的变量组合,A, B, C, D。图8绘制了$2002 \mathrm{D}$和2003体系结构的PFD、PFS、PFD $_{\text {avg }}$、PFS $_{\text {avg }}$。A组变量表示证明测试覆盖率为$100 \%$,证明测试阶段的修复是完美的。B组变量表示证明测试覆盖率为$100 \%$,证明测试阶段无修复。对校核试验中的变量进行了完美的修复;然而,通过自诊断证明测试检测到的故障被完美修复;然而,通过自我诊断检测到的失败仍然存在。D组变量表示证明测试覆盖率为0,A组的The和$P F S_{\text {avg }}$曲线最好,$D$组曲线最差,B组和$\mathrm{C}$曲线介于最佳和最差之间。计算结果与工程实际情况基本一致

统计代写|贝叶斯网络代写Bayesian network代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Scroll to Top