相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。
我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!
物理代写|固体物理代写Solid-state physics代考|The conceptual framework
In developing an atomistic and quantum picture of the solid state we had to admit that it is necessary to adopt approximations, even very drastic ones as thoroughly reported in section 1.3. As far as electrons are concerned, this has led to equation (1.15) which defines the constitutive eigenvalue problem for the total crystalline electron wavefunction ${ }^1 \Psi_{\mathrm{e}}^{(\mathbf{R})}(\mathbf{r})$ : by solving it, we ultimately define the electronic structure of the crystal.
Despite the remarkable number of adopted simplifications already introduced ${ }^2$, equation (1.15) still represents a formidably complicated many-body quantum problem. The search for general methods able to solve it, either analytically or numerically, represents an advanced topic in theoretical condensed matter physics, ranging from single-particle theories to many-body formalisms to quantum field theories [1-6]. These methods are currently the topic of active research and mostly fall well beyond the level (and the scope) of this introductory textbook. In our attempt to elaborate a more elementary theory we will follow a simplified approach, which basically consists in two logical steps: first, we will root our theory in the single-particle approximation; second, we will take profit from some materials-specific characteristics so as to further reduce the mathematical complexity of the physical problem.
The first step was already introduced in section 1.4.1: electron-ion and electronelectron interactions are replaced by the crystal field potential $V_{\mathrm{cfp}}(\mathbf{r})$, namely a local one-electron potential with the same periodicity of the underlying crystal lattice and effectively describing the most relevant many-body features. Hereafter, we will assume that such a potential is known, for instance through a self-consistent calculation, as outlined in section 1.4.1. Its practical implementation is an advanced topic of computational solid state theory [1-3].
物理代写|固体物理代写Solid-state physics代考|The Fermi–Dirac distribution function
Let us consider a gas of $N$ electrons, confined within a volume $V$ in equilibrium at temperature $T$. Quantum mechanics provides the energy spectrum of this system, as we will extensively discuss in chapters 7 and 8 ; we label by $E_i$ with $i=1,2,3, \ldots$ the energies of the single-electron levels ${ }^8$. Hereafter in this section we assume that such energies are known and ask ourselves how likely each level is to be occupied.
Let us assume that two energy levels $E_1$ e $E_2$ are occupied with probability $n_{\mathrm{FD}}\left(E_1, T\right)$ and $n_{\mathrm{FD}}\left(E_2, T\right)$, respectively. Since the system is in equilibrium, on average the number of electrons undergoing the transition $E_1 \rightarrow E_2$ in the unit time equals the number of electrons undergoing the inverse transition $E_2 \rightarrow E_1$. This statement represents a specific formulation of the more general principle of microreversibility ${ }^9$. Such transitions could be generated by any kind of mechanism, like electron-electron or electron-defect scattering.
The number of electrons undergoing the transition $E_1 \rightarrow E_2$ per unit time is calculated as the product between the number of electrons initially occupying the level $E_1$ and the rate $R_{1 \rightarrow 2}$ of occurrence of such transition. The initial number of electrons is in turn given by the product between the total number of particles $N$ and the probability that the initial energy level is occupied. Similar definitions hold for the inverse transition. If electrons were classical particles, the occupation probability of any given level with energy $E$ would be proportional to the Boltzmann factor $\exp \left(-E / k_{\mathrm{B}} T\right)[11]$ and, therefore, we could write the classical version of microreversibility as
$$
\exp \left(-E_1 / k_{\mathrm{B}} T\right) R_{1 \rightarrow 2}^{\text {classical }}=\exp \left(-E_2 / k_{\mathrm{B}} T\right) R_{2 \rightarrow 1}^{\text {classical }},
$$
where $R_{1 \rightarrow 2}^{\text {classical }}$ and $R_{1 \rightarrow 2}^{\text {classical }}$ are the transition rates calculated according to classical physics. Since, however, electrons are identical and indistinguishable quantum particles they must obey the Pauli principle (see appendix E): two electrons cannot have the same set of quantum numbers. This suggests the most general way to switch from classical to quantum transition rates
$$
R_{1 \rightarrow 2}^{\text {quantum }}=R_{1 \rightarrow 2}^{\text {classical }}\left[1-n_{\mathrm{FD}}\left(E_2, T\right)\right] \text { and } R_{2 \rightarrow 1}^{\text {quantum }}=R_{2 \rightarrow 1}^{\text {classical }}\left[1-n_{\mathrm{FD}}\left(E_1, T\right)\right],(6.2)
$$
where the terms in square parenthesis $[\cdots]$ define the probability that the final state is not previously occupied. Quantum microreversibility is straightforwardly cast in the form
$$
n_{\mathrm{FD}}\left(E_1, T\right) R_{1 \rightarrow 2}^{\text {quantum }}=n_{\mathrm{FD}}\left(E_2, T\right) R_{2 \rightarrow 1}^{\text {quantum }},
$$
which, by inserting equation (6.1), leads to
$$
\frac{R_{1 \rightarrow 2}^{\text {classical }}}{R_{2 \rightarrow 1}^{\text {cassical }}}=\frac{\exp \left(-E_2 / k_{\mathrm{B}} T\right)}{\exp \left(-E_1 / k_{\mathrm{B}} T\right)}=\frac{n_{\mathrm{FD}}\left(E_2, T\right)}{n_{\mathrm{FD}}\left(E_1, T\right)} \frac{1-n_{\mathrm{FD}}\left(E_1, T\right)}{1-n_{\mathrm{FD}}\left(E_2, T\right)},
$$
or equivalently
$$
\frac{1-n_{\mathrm{FD}}\left(E_1, T\right)}{n_{\mathrm{FD}}\left(E_1, T\right)} \exp \left(-E_1 / k_{\mathrm{B}} T\right)=\frac{1-n_{\mathrm{FD}}\left(E_2, T\right)}{n_{\mathrm{FD}}\left(E_2, T\right)} \exp \left(-E_2 / k_{\mathrm{B}} T\right)
$$

物理代写|固体物理代写Solid-state physics代考|The conceptual framework
在开发固态的原子和量子图像时,我们不得不承认有必要采用近似值,即使是在 1.3 节中详细报道的非常极端的近似值。就电子而言,这导致方程(1.15)定义了总晶体电子波函数的本构特征值问题1附言和(R)(r):通过解决它,我们最终定义了晶体的电子结构。
尽管已经引入了大量采用的简化2, 方程 (1.15) 仍然代表了一个极其复杂的多体量子问题。从单粒子理论到多体形式再到量子场论 [1-6],寻找能够以分析或数值方式解决它的通用方法代表了理论凝聚态物理中的一个高级主题。这些方法目前是积极研究的主题,并且大部分都远远超出了这本入门教科书的水平(和范围)。在我们试图阐述一个更基本的理论时,我们将采用一种简化的方法,它基本上包括两个逻辑步骤:首先,我们将把我们的理论植根于单粒子近似;其次,我们将利用一些材料特有的特性来进一步降低物理问题的数学复杂性。
第一步已经在 1.4.1 节中介绍过:电子-离子和电子电子相互作用被晶体场势取代在CFp(r),即具有与底层晶格相同周期性的局部单电子势,并有效地描述了最相关的多体特征。此后,我们将假设这种势是已知的,例如通过自洽计算,如第 1.4.1 节所述。它的实际实现是计算固态理论的一个高级课题[1-3]。
物理代写|固体物理代写Solid-state physics代考|The Fermi–Dirac distribution function
让我们考虑一种气体 $N$ 电子,限制在一个体积内 $V$ 在温度平衡 $T$. 量子力学提供了这个系统的能谱,我们将 在第 7 章和第 8 章广泛讨论:我们标记为 $E_i$ 和 $i=1,2,3, \ldots$ 单电子能级的能量 ${ }^8$. 此后在本节中,我们假 设这些能量是已知的,并问自己每个级别被占用的可能性有多大。
让我们假设两个能级 $E_1$ 和 $E_2$ 被概率占据 $n_{\mathrm{FD}}\left(E_1, T\right)$ 和 $n_{\mathrm{FD}}\left(E_2, T\right)$ ,分别。由于系统处于平衡状态, 平均而言,经历跃迁的电子数 $E_1 \rightarrow E_2$ 在单位时间内等于经历逆跃迁的电子数 $E_2 \rightarrow E_1$. 该陈述代表了 更一般的微可逆性原理的具体表述 ${ }^9$. 这种跃迁可以通过任何一种机制产生,例如电子-电子或电子缺陷散 射。
经历跃迁的电子数 $E_1 \rightarrow E_2$ 每单位时间计算为最初占据能级的电子数之间的乘积 $E_1$ 和费率 $R_{1 \rightarrow 2}$ 这种转 变的发生。初始电子数依次由粒子总数之间的乘积给出 $N$ 以及初始能级被占据的概率。类似的定义也适用 于逆转换。如果电子是经典粒子,任何给定能级的占有概率 $E$ 将与玻尔兹曼因子成正比 $\exp \left(-E / k_{\mathrm{B}} T\right)[11]$ 因此,我们可以将经典版本的微可逆性写为
$$
\exp \left(-E_1 / k_{\mathrm{B}} T\right) R_{1 \rightarrow 2}^{\text {classical }}=\exp \left(-E_2 / k_{\mathrm{B}} T\right) R_{2 \rightarrow 1}^{\text {classical }}
$$
在哪里 $R_{1 \rightarrow 2}^{\text {classical }}$ 和 $R_{1 \rightarrow 2}^{\text {classical }}$ 是根据经典物理学计算的跃迁率。然而,由于电子是相同且无法区分的量子粒 子,它们必须遵守泡利原理 (见附录 E) : 两个电子不能具有相同的一组量子数。这表明了从经典跃迁速 率转换为量子跃迁速率的最通用方法
$$
R_{1 \rightarrow 2}^{\text {quantum }}=R_{1 \rightarrow 2}^{\text {classical }}\left[1-n_{\mathrm{FD}}\left(E_2, T\right)\right] \text { and } R_{2 \rightarrow 1}^{\text {quantum }}=R_{2 \rightarrow 1}^{\text {classical }}\left[1-n_{\mathrm{FD}}\left(E_1, T\right)\right],(6.2)
$$
其中,通过揷入等式 (6.1),导致
$$
\frac{R_{1 \rightarrow 2}^{\text {classical }}}{R_{2 \rightarrow 1}^{\text {cassical }}}=\frac{\exp \left(-E_2 / k_{\mathrm{B}} T\right)}{\exp \left(-E_1 / k_{\mathrm{B}} T\right)}=\frac{n_{\mathrm{FD}}\left(E_2, T\right)}{n_{\mathrm{FD}}\left(E_1, T\right)} \frac{1-n_{\mathrm{FD}}\left(E_1, T\right)}{1-n_{\mathrm{FD}}\left(E_2, T\right)},
$$
或等效地
$$
\frac{1-n_{\mathrm{FD}}\left(E_1, T\right)}{n_{\mathrm{FD}}\left(E_1, T\right)} \exp \left(-E_1 / k_{\mathrm{B}} T\right)=\frac{1-n_{\mathrm{FD}}\left(E_2, T\right)}{n_{\mathrm{FD}}\left(E_2, T\right)} \exp \left(-E_2 / k_{\mathrm{B}} T\right)
$$

myassignments-help数学代考价格说明
1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。
2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。
3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。
Math作业代写、数学代写常见问题
留学生代写覆盖学科?
代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。
数学作业代写会暴露客户的私密信息吗?
我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。
留学生代写提供什么服务?
我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!
物理代考靠谱吗?
靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!
数学代考下单流程
提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改
付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。
售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。
保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。
myassignments-help擅长领域包含但不是全部:
myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。