# 经济代写|计量经济学代写Econometrics代考|Find2022

## 经济代写|计量经济学代写Econometrics代考|One-Step Efficient Estimation

It is sometimes easy to obtain consistent but inefficient estimates but relatively difficult to obtain NLS estimates. This may, for example, be the case when the nonlinear model to be estimated is really a linear model subject to nonlinear restrictions, as many rational expectations models are. In these circumstances, a useful result is that taking just one step from these initial consistent estimates, using the Gauss-Newton regression, yields estimates that are asymptotically equivalent to NLS estimates.

Let $\boldsymbol{\beta}$ denote the initial estimates, which are assumed to be root- $n$ consistent. The GNR is then
$$\boldsymbol{y}-\dot{\boldsymbol{x}}=\dot{\boldsymbol{X}} \boldsymbol{b}+\text { residuals, }$$
and the estimate of $\boldsymbol{b}$ from this regression is
$$\dot{\boldsymbol{b}}=\left(\dot{\boldsymbol{X}}^{\top} \dot{\boldsymbol{X}}\right)^{-1} \dot{\boldsymbol{X}}^{\top}(\boldsymbol{y}-\dot{\boldsymbol{x}}) .$$
Thus the one-step efficient estimator is
$$\dot{\boldsymbol{\beta}}=\dot{\boldsymbol{\beta}}+\dot{\boldsymbol{b}} .$$
Taylor expanding $\boldsymbol{x}(\boldsymbol{\beta})$ around $\boldsymbol{\beta}=\boldsymbol{\beta}_0$ yields
$$\dot{\boldsymbol{x}} \cong \boldsymbol{x}_0+\boldsymbol{X}_0\left(\boldsymbol{\beta}-\boldsymbol{\beta}_0\right),$$
where $\boldsymbol{x}_0 \equiv \boldsymbol{x}\left(\boldsymbol{\beta}_0\right)$ and $\boldsymbol{X}_0 \equiv \boldsymbol{X}\left(\boldsymbol{\beta}_0\right)$. Substituting this into (6.31), replacing $\boldsymbol{y}$ by its value under the DGP, $\boldsymbol{x}_0+\boldsymbol{u}$, and inserting appropriate powers of $n$ so that all quantities are $O(1)$, leads to the result that
\begin{aligned} n^{1 / 2} \dot{\boldsymbol{b}} & \cong n^{-1 / 2}\left(n^{-1} \dot{\boldsymbol{X}}^{\top} \dot{\boldsymbol{X}}\right)^{-1} \dot{\boldsymbol{X}}^{\top}\left(\boldsymbol{x}_0+\boldsymbol{u}-\boldsymbol{x}_0-\boldsymbol{X}_0\left(\boldsymbol{\boldsymbol { \beta }}-\boldsymbol{\beta}_0\right)\right) \ &=\left(n^{-1} \dot{\boldsymbol{X}}^{\top} \dot{\boldsymbol{X}}\right)^{-1}\left(n^{-1 / 2} \dot{\boldsymbol{X}}^{\top} \boldsymbol{u}-\left(n^{-1} \dot{\boldsymbol{X}}^{\top} \boldsymbol{X}_0\right) n^{1 / 2}\left(\boldsymbol{\boldsymbol { \beta }}-\boldsymbol{\beta}_0\right)\right) \end{aligned}
But notice that
$$n^{-1} \dot{\boldsymbol{X}}^{\top} \dot{\boldsymbol{X}} \stackrel{a}{=} n^{-1} \boldsymbol{X}_0^{\top} \boldsymbol{X}_0 \stackrel{a}{=} n^{-1} \dot{\boldsymbol{X}}^{\top} \boldsymbol{X}_0$$

## 经济代写|计量经济学代写Econometrics代考|Hypothesis Tests Using Any Consistent Estimates

The procedures for testing that we discussed in Sections $6.4$ and $6.5$ all involve evaluating the artificial regression at restricted NLS estimates and thus yield test statistics based on the LM principle. But when the restricted regression function is nonlinear, it is not always convenient to obtain NLS estimates. Luckily, one can perform tests by means of a GNR whenever any root- $n$ consistent estimates that satisfy the null hypothesis are available. We briefly discuss how to do so in this section.

Suppose we are dealing with the situation discussed in Section 6.4, in which the parameter vector $\boldsymbol{\beta}$ is partitioned as $\left[\boldsymbol{\beta}_1: \boldsymbol{\beta}_2\right]$, and the null hypothesis is that $\boldsymbol{\beta}_2=\mathbf{0}$. Assume that we have available a vector of root- $n$
$$y-\dot{x}=\dot{X}_1 b_1+\dot{X}_2 b_2+\text { residuals. }$$
The explained sum of squares from this regression is
$$(\boldsymbol{y}-\dot{\boldsymbol{x}})^{\top} \dot{\boldsymbol{P}}_1(\boldsymbol{y}-\dot{\boldsymbol{x}})+(\boldsymbol{y}-\dot{\boldsymbol{x}})^{\top} \dot{\boldsymbol{M}}_1 \dot{\boldsymbol{X}}_2\left(\dot{\boldsymbol{X}}_2^{\top} \dot{\boldsymbol{M}}_1 \dot{\boldsymbol{X}}_2\right)^{-1} \dot{\boldsymbol{X}}_2^{\top} \dot{\boldsymbol{M}}_1(\boldsymbol{y}-\dot{\boldsymbol{x}}) .$$
The first term here is the explained sum of squares from a regression of $\boldsymbol{y}-\dot{\boldsymbol{x}}$ on $\dot{\boldsymbol{X}}_1$ alone, and the second term is the increase in the explained sum of squares brought about by the inclusion of $\dot{\boldsymbol{X}}_2$. Note that the first term is in general not zero, because $\boldsymbol{\beta}_1$ will not in general satisfy the first-order conditions for NLS estimates of the restricted model.

## 经济代写|计量经济学代写Econometrics代考|One-Step Efficient Estimation

$$\boldsymbol{y}-\dot{\boldsymbol{x}}=\dot{\boldsymbol{X}} \boldsymbol{b}+\text { residuals, }$$

$$\dot{\boldsymbol{b}}=\left(\dot{\boldsymbol{X}}^{\top} \dot{\boldsymbol{X}}\right)^{-1} \dot{\boldsymbol{X}}^{\top}(\boldsymbol{y}-\dot{\boldsymbol{x}}) .$$

$$\dot{\boldsymbol{\beta}}=\dot{\boldsymbol{\beta}}+\dot{\boldsymbol{b}} .$$

$$\dot{\boldsymbol{x}} \cong \boldsymbol{x}_0+\boldsymbol{X}_0\left(\beta-\boldsymbol{\beta}_0\right),$$

$$n^{1 / 2} \dot{\boldsymbol{b}} \cong n^{-1 / 2}\left(n^{-1} \dot{\boldsymbol{X}}^{\top} \dot{\boldsymbol{X}}\right)^{-1} \dot{\boldsymbol{X}}^{\top}\left(\boldsymbol{x}_0+\boldsymbol{u}-\boldsymbol{x}_0-\boldsymbol{X}_0\left(\boldsymbol{\beta}-\boldsymbol{\beta}_0\right)\right) \quad=\left(n^{-1} \dot{\boldsymbol{X}}^{\top} \dot{\boldsymbol{X}}\right)^{-1}\left(n^{-1 / 2} \dot{\boldsymbol{X}}^{\top} \boldsymbol{u}\right.$$

$$n^{-1} \dot{\boldsymbol{X}}^{\top} \dot{\boldsymbol{X}} \stackrel{a}{=} n^{-1} \boldsymbol{X}_0^{\top} \boldsymbol{X}_0 \stackrel{a}{=} n^{-1} \dot{\boldsymbol{X}}^{\top} \boldsymbol{X}_0$$

## 经济代写|计量经济学代写Econometrics代考|Hypothesis Tests Using Any Consistent Estimates

$$y-\dot{x}=\dot{X}_1 b_1+\dot{X}_2 b_2+\text { residuals. }$$

$$(\boldsymbol{y}-\dot{\boldsymbol{x}})^{\top} \dot{\boldsymbol{P}}_1(\boldsymbol{y}-\dot{\boldsymbol{x}})+(\boldsymbol{y}-\dot{\boldsymbol{x}})^{\top} \dot{\boldsymbol{M}}_1 \dot{\boldsymbol{X}}_2\left(\dot{\boldsymbol{X}}_2^{\top} \dot{\boldsymbol{M}}_1 \dot{\boldsymbol{X}}_2\right)^{-1} \dot{\boldsymbol{X}}_2^{\top} \dot{\boldsymbol{M}}_1(\boldsymbol{y}-\dot{\boldsymbol{x}})$$

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址，相关账户，以及课程名称，Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明，让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb，费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵)，报价后价格觉得合适，可以先付一周的款，我们帮你试做，满意后再继续，遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款，全款，周付款，周付款一方面方便大家查阅自己的分数，一方面也方便大家资金周转，注意:每周固定周一时先预付下周的定金，不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

myassignments-help擅长领域包含但不是全部: