经济代写|发展经济学代写Development Economics代考|ECONG056

相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


经济代写|发展经济学代写Development Economics代考|How Did OPMUse Machine Learning in Its QIEs?

OPM has experimented with two closely related methods: “double selection” (DS) and “double machine learning” (DML). ${ }^{10}$ Both approaches build on the idea that when the ultimate objective is to estimate causal effects, good covariate selection means that one needs to build a model with variables that are related to participation status and that are related to the outcome of interest. Otherwise, differences in outcomes between participants and non-participants might be due to those variables and not the policy to be evaluated.

Hence, in a first stage, machine learning algorithms should be applied to two separate estimation problems: how covariates are related to the treatment assignment variable and how they are related to the outcome variable. In a second stage, the results of these first two analyses can be used to estimate the impact of the policy.

The key insight here is that the first stage in this approach can be interpreted as a prediction problem that machine learning can help to address. DS does so by employing machine learning-driven regularized regression methods, such as LASSO, to automatically select a limited set of variables that turn out to be related to both participation status and the outcome variable, and to then feed those variables into causally interpreted second-stage estimations. Simply put, machine learning in the first stage here is used for variable selection alone.
DML exploits the predictive power of machine learning approaches more comprehensively. In the first stage, a flexible set of machine learning methods (e.g. random forests or neural networks) can be used to separately model the relationship between covariates, the outcome variable, and the participation assignment variable. These models are used to predict both outcomes and the participation status. Prediction errors, that is, residuals, are recorded and used in the second stage to estimate the effect of the policy. The intuition behind this approach is that if the relationships between covariates and the outcome, on the one hand, and between covariates and the participation assignment, on the other, are modelled well in the first stage, the remaining errors will capture information that cannot be explained by the covariates controlled for. Hence, this information should reveal whether once taking covariates into account, participation assignment can explain remaining variation in the outcome variable.

经济代写|发展经济学代写Development Economics代考|What Was the Benefit of Using Machine Learning in QIEs?

There are two main benefits of using machine learning for variable selection and modelling purposes in QIEs. First, employing such algorithms allows for a full systematic search over the set of baseline covariates – including their transformations and interactions – to identify and control for relationships in the data that might be biasing raw comparisons of outcomes between participant and non-participant groups. Hence, assuming that these machine learning algorithms are employed correctly, this adds substantive robustness to the underlying assumption in many QIEs that all relevant covariates that drive systematic differences between the two groups are controlled for appropriately and hence treatment is as good as random.

Second, employing these methods removes researcher discretion from the process of covariate selection and modelling, thereby increasing the rigour of QIE estimation processes. Even though, as described above, conventionally this process is pre-specified and theory driven, disagreement often still persists among researchers about the exact specifications to choose in practice. Machine learning allows researchers to be systematic about this process:

There are many disadvantages to the traditional process, including but not limited to the fact that researchers would find it difficult to be systematic or comprehensive in checking alternative specifications (…). The regularisation and systematic model selection have many advantages over traditional approaches, and for this reason will become a standard part of empirical practice in economics.

经济代写|发展经济学代写Development Economics代考|ECONG056

经济代写|发展经济学代写Development Economics代考|How Did OPMUse Machine Learning in Its QIEs?

OPM 尝试了两种密切相关的方法:“双重选择”(DS)和“双重机器学习”(DML)。10这两种方法都建立在这样一种思想上,即当最终目标是估计因果效应时,良好的协变量选择意味着需要建立一个模型,其中的变量与参与状态相关并且与感兴趣的结果相关。否则,参与者和非参与者之间的结果差异可能是由于这些变量而不是要评估的政策。

因此,在第一阶段,机器学习算法应该应用于两个独立的估计问题:协变量如何与治疗分配变量相关,以及它们如何与结果变量相关。在第二阶段,前两项分析的结果可用于估计政策的影响。

这里的关键见解是,这种方法的第一阶段可以解释为机器学习可以帮助解决的预测问题。DS 通过采用机器学习驱动的正则化回归方法(例如 LASSO)自动选择一组有限的变量,这些变量最终与参与状态和结果变量相关,然后将这些变量输入到因果解释的第二个变量中。 -阶段估计。简单地说,这里第一阶段的机器学习仅用于变量选择。
DML 更全面地利用了机器学习方法的预测能力。在第一阶段,可以使用一组灵活的机器学习方法(例如随机森林或神经网络)分别对协变量、结果变量和参与分配变量之间的关系进行建模。这些模型用于预测结果和参与状态。预测误差,即残差,在第二阶段被记录并用于估计策略的效果。这种方法背后的直觉是,如果一方面协变量和结果之间的关系,另一方面协变量和参与分配之间的关系在第一阶段建模得很好,那么剩余的错误将捕获无法被识别的信息。由控制的协变量解释。因此,

经济代写|发展经济学代写Development Economics代考|What Was the Benefit of Using Machine Learning in QIEs?

在 QIE 中使用机器学习进行变量选择和建模有两个主要好处。首先,使用此类算法允许对一组基线协变量进行全面系统的搜索——包括它们的转换和交互——以识别和控制数据中的关系,这些关系可能会使参与者和非参与者组之间结果的原始比较产生偏差。因此,假设这些机器学习算法被正确使用,这为许多 QIE 中的基本假设增加了实质性的稳健性,即驱动两组之间系统差异的所有相关协变量都得到适当控制,因此治疗与随机一样好。

其次,采用这些方法消除了研究人员在协变量选择和建模过程中的自由裁量权,从而提高了 QIE 估计过程的严谨性。尽管如上所述,传统上这个过程是预先指定的并且是由理论驱动的,但研究人员之间仍然经常存在关于在实践中选择的确切规范的分歧。机器学习使研究人员能够系统地了解这个过程:

传统过程存在许多缺点,包括但不限于研究人员会发现难以系统或全面地检查替代规范(……)。正则化和系统化模型选择与传统方法相比具有许多优势,因此将成为经济学实证实践的标准部分。

经济代写|发展经济学代写Development Economics代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Scroll to Top