经济代写|博弈论代写Game Theory代考|ECON3503

相信许多留学生对数学代考都不陌生,国外许多大学都引进了网课的学习模式。网课学业有利有弊,学生不需要到固定的教室学习,只需要登录相应的网站研讨线上课程即可。但也正是其便利性,线上课程的数量往往比正常课程多得多。留学生课业深重,时刻名贵,既要学习知识,又要结束多种类型的课堂作业,physics作业代写,物理代写,论文写作等;网课考试很大程度增加了他们的负担。所以,您要是有这方面的困扰,不要犹疑,订购myassignments-help代考渠道的数学代考服务,价格合理,给你前所未有的学习体会。

我们的数学代考服务适用于那些对课程结束没有掌握,或许没有满足的时刻结束网课的同学。高度匹配专业科目,按需结束您的网课考试、数学代写需求。担保买卖支持,100%退款保证,免费赠送Turnitin检测报告。myassignments-help的Math作业代写服务,是你留学路上忠实可靠的小帮手!


经济代写|博弈论代写Game Theory代考|Approaches to Learning in Game Theory

The relative-payoff-sum (RPS) learning rule proposed by Harley (1981) and Maynard Smith (1982) appears to have been developed with the aim to make players approach an ESS. It makes use of discounted payoff sums for different actions $u$. For an individual who obtains a reward $R_t$ in round $t$, we can write a total discounted payoff sum as $S_0=r$ and
$$
S_t=r+\sum_{\tau=0}^{t-1} \gamma^\tau R_{t-\tau}
$$
for $t \geq 1$, where $\gamma \leq 1$ is a discount factor and $r>0$ is referred to as a (total) residual payoff. With actions $u_k$, for instance $u_1$ and $u_2$, we can split the total $S_t$ into components, $S_t=S_{1 t}+S_{2 t}$, where only those rounds where action $u_k$ is used contribute to $S_{k t}$. In doing this, the residual should also be split in some way, as $r=r_1+r_2$, so that
$$
S_{k t}=r_k+\sum_{\substack{\tau=0 \ u=u_k}}^{t-1} \gamma^\tau R_{t-\tau} .
$$
The RPS learning rule is then to use action $u_k$ in round $t$ with probability $p_{k t}=$ $S_{k, t-1} / S_{t-1}$. For this to always work one requires that the rewards and residuals are positive. A consequence of the rule is that actions that have yielded higher rewards, but also those that have been used more often, have a higher probability of being chosen by the learner.

Although the RPS rule is not directly based on ideas about learning in animal psychology, it is broadly speaking a kind of reinforcement learning. In general, beyond the actor-critic approach described by Sutton and Barto (2018) and which we have used in this chapter, reinforcement learning can refer to any process where individuals learn from rewards that are somehow reinforcing, in a way that does not involve foresight or detailed understanding of the game situation. This broader interpretation has for instance been used by Roth and Erev (1995), and Erev and Roth (1998, 2014) in influential work on human behaviour in experimental games. Their basic reinforcement-learning model corresponds to the RPS learning rule.

经济代写|博弈论代写Game Theory代考|Convergence towards an Endpoint of a Game

In the examples in this chapter on the Hawk-Dove, investment, and dominance games (Sections 5.2,5.3, and 5.4), we found that low rates of learning produced learning outcomes near an ESS of a one-shot game, after many rounds of learning. The general question of whether learning will converge to a Nash equilibrium is much studied in economic game theory. The results are mixed, in the sense that there are special classes of games for which there is convergence, but also examples of non-convergence, such as cycling or otherwise fluctuating learning dynamics. Pangallo et al. (2019) randomly generated a large number of two-player games with two or more (discrete) actions per player, and examined the convergence properties for several classes of learning dynamics, including Bush-Mosteller reinforcement learning. They found that for competitive games, where gains by one player tend to come at a loss for the other, and with many actions, non-convergence was the typical outcome. In biology we are mainly interested in games that represent widespread and important interactions, and non-convergence of learning dynamics need not be common for these games. In any case, the relation between learning outcomes and game equilibria should always be examined, because game theoretic analyses add valuable understanding about evolved learning rules and learning outcomes.

The distinction between large and small worlds comes from general theories of rational human decision-making and learning under ignorance (Savage, 1972; Binmore, 2009; Huttegger, 2017). The large-worlds approach is a sort of questioning or criticism of the realism of the Bayesian small-worlds approach (Binmore, 2009). For game theory in biology, the decision-making processes of other individuals are among the most complex aspects of an individual’s environment. So, for instance, in fictitious play individuals are assumed to understand the game they are playing, but they do not have an accurate representation of how other individuals make decisions. For this reason, fictitious play is a large-worlds approach, although it goes beyond basic reinforcement learning.

There are in fact rather few examples where game-theory models of social interactions have achieved a thoroughgoing small-worlds approach when there is uncertainty about the characteristics of other individuals. Some of these examples we present later in the book (Chapter 8). We argue that learning, including actorcritic reinforcement learning, will be especially helpful to study social interactions where individuals respond to each other’s characteristics, as we develop in Section 8.6. It could well be that it is also a realistic description of how animals deal with social interactions. Further, for situations that animals encounter frequently and are important in their lives it could be realistic to assume, as we have illustrated in this chapter, that evolution will tune certain aspects of the learning process, including learning rates.

经济代写|博弈论代写Game Theory代考|ECON3503

经济代写|博弈论代写Game Theory代考|Approaches to Learning in Game Theory

Harley (1981) 和 Maynard Smith (1982) 提出的相对收益和 (RPS) 学习规则似乎是为了让玩家接近 ESS 而 开发的。它利用不同行动的贴现收益总额 $u$. 对于获得奖励的个人 $R_t$ 圆形 $t$ ,我们可以将总贴现收益写为 $S_0=r$ 和
$$
S_t=r+\sum_{\tau=0}^{t-1} \gamma^\tau R_{t-\tau}
$$
为了 $t \geq 1$ ,在哪里 $\gamma \leq 1$ 是一个折扣因子并且 $r>0$ 称为 (总) 剩余收益。有动作 $u_k$ ,例如 $u_1$ 和 $u_2$ ,我 们可以拆分总数 $S_t$ 成组件, $S_t=S_{1 t}+S_{2 t}$ ,只有那些回合行动 $u_k$ 用于有助于 $S_{k t}$. 在这样做时,残差也应 该以某种方式拆分,因为 $r=r_1+r_2$ ,以便
$$
S_{k t}=r_k+\sum_{\tau=0}^{t-1} \gamma^\tau R_{t-u_k} R_{t-\tau} .
$$
RPS 学习规则是使用动作 $u_k$ 圆形 $t$ 有概率 $p_{k t}=S_{k, t-1} / S_{t-1}$. 为此,需要奖励和残差是正数。该规则的一 个结果是产生更高奖励的动作,以及那些被更频僌使用的动作,被学习者选择的概率更高。
虽然 RPS 规则不是直接基于动物心理学中关于学习的思想,但从广义上讲,它是一种强化学习。一般来 说,除了 Sutton 和 Barto(2018 年) 描述的以及我们在本章中使用的演员批评方法之外,强化学习可以 指个人从某种增强的奖励中学习的任何过程,其方式不涉及预见或详细了解比㒏情况。例如,Roth 和 Erev (1995) 以及 Erev 和 Roth $(1998$, 2014) 在关于实验斿戏中人类行为的有影响力的工作中使用了这种更 广泛的解释。他们的基本强化学习模型对应于 RPS 学习规则。

经济代写|博弈论代写Game Theory代考|Convergence towards an Endpoint of a Game

在本章关于鹰鸽、投资和支配博弈的示例(第 5.2、5.3 和 5.4 节)中,我们发现在多轮之后,低学习率产生的学习结果接近一次性博弈的 ESS的学习。学习是否会收敛到纳什均衡的一般问题在经济博弈论中得到了很多研究。结果好坏参半,从某种意义上说,有一些特殊类别的游戏存在收敛性,但也有非收敛性的例子,例如骑自行车或其他波动的学习动态。潘加洛等人。(2019) 随机生成大量两人游戏,每个玩家有两个或更多(离散)动作,并检查了几类学习动态的收敛特性,包括 Bush-Mosteller 强化学习。他们发现,对于竞技游戏,一个参与者的收益往往会让另一个参与者损失,并且在许多行动中,不收敛是典型的结果。在生物学中,我们主要对代表广泛而重要的相互作用的游戏感兴趣,而学习动态的非收敛对于这些游戏来说并不常见。在任何情况下,都应该检查学习成果和博弈均衡之间的关系,因为博弈论分析增加了对进化学习规则和学习成果的有价值的理解。

大世界和小世界的区别来自于人类理性决策和无知学习的一般理论(Savage,1972;Binmore,2009;Huttegger,2017)。大世界方法是对贝叶斯小世界方法的现实主义的一种质疑或批评(Binmore,2009)。对于生物学中的博弈论,其他个体的决策过程是个体环境中最复杂的方面之一。因此,例如,在虚拟游戏中,假设个人理解他们正在玩的游戏,但他们没有准确表示其他人如何做出决定。出于这个原因,虚拟游戏是一种大世界的方法,尽管它超越了基本的强化学习。

事实上,当其他个体的特征不确定时,社交互动的博弈论模型能够实现彻底的小世界方法的例子很少。我们将在本书后面(第 8 章)中介绍其中的一些示例。我们认为,学习,包括演员批评强化学习,将特别有助于研究个体对彼此特征做出反应的社会互动,正如我们在第 8.6 节中所讨论的那样。它很可能也是对动物如何处理社会互动的真实描述。此外,对于动物经常遇到并且在其生活中很重要的情况,可以假设,正如我们在本章中所说明的那样,进化将调整学习过程的某些方面,包括学习率。

经济代写|博弈论代写Game Theory代考

myassignments-help数学代考价格说明

1、客户需提供物理代考的网址,相关账户,以及课程名称,Textbook等相关资料~客服会根据作业数量和持续时间给您定价~使收费透明,让您清楚的知道您的钱花在什么地方。

2、数学代写一般每篇报价约为600—1000rmb,费用根据持续时间、周作业量、成绩要求有所浮动(持续时间越长约便宜、周作业量越多约贵、成绩要求越高越贵),报价后价格觉得合适,可以先付一周的款,我们帮你试做,满意后再继续,遇到Fail全额退款。

3、myassignments-help公司所有MATH作业代写服务支持付半款,全款,周付款,周付款一方面方便大家查阅自己的分数,一方面也方便大家资金周转,注意:每周固定周一时先预付下周的定金,不付定金不予继续做。物理代写一次性付清打9.5折。

Math作业代写、数学代写常见问题

留学生代写覆盖学科?

代写学科覆盖Math数学,经济代写,金融,计算机,生物信息,统计Statistics,Financial Engineering,Mathematical Finance,Quantitative Finance,Management Information Systems,Business Analytics,Data Science等。代写编程语言包括Python代写、Physics作业代写、物理代写、R语言代写、R代写、Matlab代写、C++代做、Java代做等。

数学作业代写会暴露客户的私密信息吗?

我们myassignments-help为了客户的信息泄露,采用的软件都是专业的防追踪的软件,保证安全隐私,绝对保密。您在我们平台订购的任何网课服务以及相关收费标准,都是公开透明,不存在任何针对性收费及差异化服务,我们随时欢迎选购的留学生朋友监督我们的服务,提出Math作业代写、数学代写修改建议。我们保障每一位客户的隐私安全。

留学生代写提供什么服务?

我们提供英语国家如美国、加拿大、英国、澳洲、新西兰、新加坡等华人留学生论文作业代写、物理代写、essay润色精修、课业辅导及网课代修代写、Quiz,Exam协助、期刊论文发表等学术服务,myassignments-help拥有的专业Math作业代写写手皆是精英学识修为精湛;实战经验丰富的学哥学姐!为你解决一切学术烦恼!

物理代考靠谱吗?

靠谱的数学代考听起来简单,但实际上不好甄别。我们能做到的靠谱,是把客户的网课当成自己的网课;把客户的作业当成自己的作业;并将这样的理念传达到全职写手和freelancer的日常培养中,坚决辞退糊弄、不守时、抄袭的写手!这就是我们要做的靠谱!

数学代考下单流程

提早与客服交流,处理你心中的顾虑。操作下单,上传你的数学代考/论文代写要求。专家结束论文,准时交给,在此过程中可与专家随时交流。后续互动批改

付款操作:我们数学代考服务正常多种支付方法,包含paypal,visa,mastercard,支付宝,union pay。下单后与专家直接互动。

售后服务:论文结束后保证完美经过turnitin查看,在线客服全天候在线为您服务。如果你觉得有需求批改的当地能够免费批改,直至您对论文满意为止。如果上交给教师后有需求批改的当地,只需求告诉您的批改要求或教师的comments,专家会据此批改。

保密服务:不需求提供真实的数学代考名字和电话号码,请提供其他牢靠的联系方法。我们有自己的工作准则,不会泄露您的个人信息。

myassignments-help擅长领域包含但不是全部:

myassignments-help服务请添加我们官网的客服或者微信/QQ,我们的服务覆盖:Assignment代写、Business商科代写、CS代考、Economics经济学代写、Essay代写、Finance金融代写、Math数学代写、report代写、R语言代考、Statistics统计学代写、物理代考、作业代写、加拿大代考、加拿大统计代写、北美代写、北美作业代写、北美统计代考、商科Essay代写、商科代考、数学代考、数学代写、数学作业代写、physics作业代写、物理代写、数据分析代写、新西兰代写、澳洲Essay代写、澳洲代写、澳洲作业代写、澳洲统计代写、澳洲金融代写、留学生课业指导、经济代写、统计代写、统计作业代写、美国Essay代写、美国代考、美国数学代写、美国统计代写、英国Essay代写、英国代考、英国作业代写、英国数学代写、英国统计代写、英国金融代写、论文代写、金融代考、金融作业代写。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Scroll to Top